Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 1;338(Pt 2):241–249.

Upstream region of rat serum albumin gene promoter contributes to promoter activity: presence of functional binding site for hepatocyte nuclear factor-3.

C H Hsiang 1, N W Marten 1, D S Straus 1
PMCID: PMC1220048  PMID: 10024498

Abstract

Transcription of the serum albumin gene occurs almost exclusively in the liver and is controlled in part by a strong liver-specific promoter. The upstream region of the serum albumin gene promoter is highly conserved among species and is footprinted in vitro by a number of nuclear proteins. However, the role of the upstream promoter region in regulating transcription and the identity of the transcription factors that bind to this region have not been established. In the present study, deletion analysis of the rat serum albumin promoter in transiently transfected HepG2 cells demonstrated that elimination of the region between -207 and -153 bp caused a two-fold decrease in promoter activity (P<0.05). Additional analysis of the -207 to -124 bp promoter interval led to the identification of two potential binding sites for hepatocyte nuclear factor-3 (HNF-3) located at -168 to -157 bp (site X) and -145 to -134 bp (site Y). Electrophoretic mobility-shift assays performed with the HNF-3 X and Y sites demonstrated that both sites are capable of binding HNF-3alpha and HNF-3beta. Placement of a single copy of the HNF-3 X site upstream from a minimal promoter increased promoter activity by about four-fold in HepG2 cells, and the reporter construct containing this site could be transactivated if co-transfected with an HNF-3 expression construct. Furthermore, inactivation of the HNF-3 X site by site-directed mutagenesis within the context of the -261 bp albumin promoter construct resulted in a 40% decrease in transcription (P<0.05). These results indicate that the positive effect of the -207 to -153 bp promoter interval is attributable to the presence of the HNF-3 X site within this interval. Additional results obtained with transfected HepG2 cells suggest that the HNF-3 Y site plays a lesser role in activation of transcription than the X site.

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer T. K., Lee H. L., Cordingley M. G., Mymryk J. S., Fragoso G., Berard D. S., Hager G. L. Differential steroid hormone induction of transcription from the mouse mammary tumor virus promoter. Mol Endocrinol. 1994 May;8(5):568–576. doi: 10.1210/mend.8.5.8058066. [DOI] [PubMed] [Google Scholar]
  2. Bernier D., Thomassin H., Allard D., Guertin M., Hamel D., Blaquière M., Beauchemin M., LaRue H., Estable-Puig M., Bélanger L. Functional analysis of developmentally regulated chromatin-hypersensitive domains carrying the alpha 1-fetoprotein gene promoter and the albumin/alpha 1-fetoprotein intergenic enhancer. Mol Cell Biol. 1993 Mar;13(3):1619–1633. doi: 10.1128/mcb.13.3.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bui T., Kuo C., Rotwein P., Straus D. S. Prostaglandin A2 specifically represses insulin-like growth factor-I gene expression in C6 rat glioma cells. Endocrinology. 1997 Mar;138(3):985–993. doi: 10.1210/endo.138.3.4980. [DOI] [PubMed] [Google Scholar]
  4. Camper S. A., Tilghman S. M. Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. 1989 Apr;3(4):537–546. doi: 10.1101/gad.3.4.537. [DOI] [PubMed] [Google Scholar]
  5. Cereghini S., Raymondjean M., Carranca A. G., Herbomel P., Yaniv M. Factors involved in control of tissue-specific expression of albumin gene. Cell. 1987 Aug 14;50(4):627–638. doi: 10.1016/0092-8674(87)90036-5. [DOI] [PubMed] [Google Scholar]
  6. Cirillo L. A., McPherson C. E., Bossard P., Stevens K., Cherian S., Shim E. Y., Clark K. L., Burley S. K., Zaret K. S. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 1998 Jan 2;17(1):244–254. doi: 10.1093/emboj/17.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Costa R. H., Grayson D. R., Darnell J. E., Jr Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and alpha 1-antitrypsin genes. Mol Cell Biol. 1989 Apr;9(4):1415–1425. doi: 10.1128/mcb.9.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Derman E., Krauter K., Walling L., Weinberger C., Ray M., Darnell J. E., Jr Transcriptional control in the production of liver-specific mRNAs. Cell. 1981 Mar;23(3):731–739. doi: 10.1016/0092-8674(81)90436-0. [DOI] [PubMed] [Google Scholar]
  9. Factor V. M., Kao C. Y., Santoni-Rugiu E., Woitach J. T., Jensen M. R., Thorgeirsson S. S. Constitutive expression of mature transforming growth factor beta1 in the liver accelerates hepatocarcinogenesis in transgenic mice. Cancer Res. 1997 Jun 1;57(11):2089–2095. [PubMed] [Google Scholar]
  10. Felsenfeld G. Chromatin as an essential part of the transcriptional mechanism. Nature. 1992 Jan 16;355(6357):219–224. doi: 10.1038/355219a0. [DOI] [PubMed] [Google Scholar]
  11. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  12. Groupp E. R., Crawford N., Locker J. Characterization of the distal alpha-fetoprotein enhancer, a strong, long distance, liver-specific activator. J Biol Chem. 1994 Sep 2;269(35):22178–22187. [PubMed] [Google Scholar]
  13. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997 Sep 25;389(6649):349–352. doi: 10.1038/38664. [DOI] [PubMed] [Google Scholar]
  14. Gualdi R., Bossard P., Zheng M., Hamada Y., Coleman J. R., Zaret K. S. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996 Jul 1;10(13):1670–1682. doi: 10.1101/gad.10.13.1670. [DOI] [PubMed] [Google Scholar]
  15. Haché R. J., Wiskocil R., Vasa M., Roy R. N., Lau P. C., Deeley R. G. The 5' noncoding and flanking regions of the avian very low density apolipoprotein II and serum albumin genes. Homologies with the egg white protein genes. J Biol Chem. 1983 Apr 10;258(7):4556–4564. [PubMed] [Google Scholar]
  16. Harnish D. C., Malik S., Kilbourne E., Costa R., Karathanasis S. K. Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4. J Biol Chem. 1996 Jun 7;271(23):13621–13628. doi: 10.1074/jbc.271.23.13621. [DOI] [PubMed] [Google Scholar]
  17. Haynes T. L., Thomas M. B., Dusing M. R., Valerius M. T., Potter S. S., Wiginton D. A. An enhancer LEF-1/TCF-1 site is essential for insertion site-independent transgene expression in thymus. Nucleic Acids Res. 1996 Dec 15;24(24):5034–5044. doi: 10.1093/nar/24.24.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herbomel P., Rollier A., Tronche F., Ott M. O., Yaniv M., Weiss M. C. The rat albumin promoter is composed of six distinct positive elements within 130 nucleotides. Mol Cell Biol. 1989 Nov;9(11):4750–4758. doi: 10.1128/mcb.9.11.4750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Izban M. G., Papaconstantinou J. Cell-specific expression of mouse albumin promoter. Evidence for cell-specific DNA elements within the proximal promoter region and cis-acting DNA elements upstream of -160. J Biol Chem. 1989 Jun 5;264(16):9171–9179. [PubMed] [Google Scholar]
  20. Jiang G., Nepomuceno L., Hopkins K., Sladek F. M. Exclusive homodimerization of the orphan receptor hepatocyte nuclear factor 4 defines a new subclass of nuclear receptors. Mol Cell Biol. 1995 Sep;15(9):5131–5143. doi: 10.1128/mcb.15.9.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jiang G., Sladek F. M. The DNA binding domain of hepatocyte nuclear factor 4 mediates cooperative, specific binding to DNA and heterodimerization with the retinoid X receptor alpha. J Biol Chem. 1997 Jan 10;272(2):1218–1225. doi: 10.1074/jbc.272.2.1218. [DOI] [PubMed] [Google Scholar]
  22. Kelly C. L., Rhead W. J., Kutschke W. K., Brix A. E., Hamm D. A., Pinkert C. A., Lindsey J. R., Wood P. A. Functional correction of short-chain acyl-CoA dehydrogenase deficiency in transgenic mice: implications for gene therapy of human mitochondrial enzyme deficiencies. Hum Mol Genet. 1997 Sep;6(9):1451–1455. doi: 10.1093/hmg/6.9.1451. [DOI] [PubMed] [Google Scholar]
  23. Kingston R. E., Bunker C. A., Imbalzano A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 1996 Apr 15;10(8):905–920. doi: 10.1101/gad.10.8.905. [DOI] [PubMed] [Google Scholar]
  24. Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Lai E., Prezioso V. R., Smith E., Litvin O., Costa R. H., Darnell J. E., Jr HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 1990 Aug;4(8):1427–1436. doi: 10.1101/gad.4.8.1427. [DOI] [PubMed] [Google Scholar]
  27. Lai E., Prezioso V. R., Tao W. F., Chen W. S., Darnell J. E., Jr Hepatocyte nuclear factor 3 alpha belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev. 1991 Mar;5(3):416–427. doi: 10.1101/gad.5.3.416. [DOI] [PubMed] [Google Scholar]
  28. Li Y. C., Ross J., Scheppler J. A., Franza B. R., Jr An in vitro transcription analysis of early responses of the human immunodeficiency virus type 1 long terminal repeat to different transcriptional activators. Mol Cell Biol. 1991 Apr;11(4):1883–1893. doi: 10.1128/mcb.11.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lichtsteiner S., Wuarin J., Schibler U. The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell. 1987 Dec 24;51(6):963–973. doi: 10.1016/0092-8674(87)90583-6. [DOI] [PubMed] [Google Scholar]
  30. Liu J. K., Bergman Y., Zaret K. S. The mouse albumin promoter and a distal upstream site are simultaneously DNase I hypersensitive in liver chromatin and bind similar liver-abundant factors in vitro. Genes Dev. 1988 May;2(5):528–541. doi: 10.1101/gad.2.5.528. [DOI] [PubMed] [Google Scholar]
  31. Liu J. K., DiPersio C. M., Zaret K. S. Extracellular signals that regulate liver transcription factors during hepatic differentiation in vitro. Mol Cell Biol. 1991 Feb;11(2):773–784. doi: 10.1128/mcb.11.2.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maire P., Wuarin J., Schibler U. The role of cis-acting promoter elements in tissue-specific albumin gene expression. Science. 1989 Apr 21;244(4902):343–346. doi: 10.1126/science.2711183. [DOI] [PubMed] [Google Scholar]
  33. McPherson C. E., Shim E. Y., Friedman D. S., Zaret K. S. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell. 1993 Oct 22;75(2):387–398. doi: 10.1016/0092-8674(93)80079-t. [DOI] [PubMed] [Google Scholar]
  34. Millonig J. H., Emerson J. A., Levorse J. M., Tilghman S. M. Molecular analysis of the distal enhancer of the mouse alpha-fetoprotein gene. Mol Cell Biol. 1995 Jul;15(7):3848–3856. doi: 10.1128/mcb.15.7.3848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nitsch D., Schütz G. The distal enhancer implicated in the developmental regulation of the tyrosine aminotransferase gene is bound by liver-specific and ubiquitous factors. Mol Cell Biol. 1993 Aug;13(8):4494–4504. doi: 10.1128/mcb.13.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Overdier D. G., Porcella A., Costa R. H. The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol. 1994 Apr;14(4):2755–2766. doi: 10.1128/mcb.14.4.2755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pinkert C. A., Ornitz D. M., Brinster R. L., Palmiter R. D. An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. 1987 May;1(3):268–276. doi: 10.1101/gad.1.3.268. [DOI] [PubMed] [Google Scholar]
  38. Powell D. J., Friedman J. M., Oulette A. J., Krauter K. S., Darnell J. E., Jr Transcriptional and post-transcriptional control of specific messenger RNAs in adult and embryonic liver. J Mol Biol. 1984 Oct 15;179(1):21–35. doi: 10.1016/0022-2836(84)90304-8. [DOI] [PubMed] [Google Scholar]
  39. Power S. C., Cereghini S., Rollier A., Gannon F. Isolation and functional analysis of the promoter of the bovine serum albumin gene. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1447–1456. doi: 10.1006/bbrc.1994.2347. [DOI] [PubMed] [Google Scholar]
  40. Sargent L. M., Dragan Y. P., Sattler G., Xu Y. H., Wiley J., Pitot H. C. Specific chromosomal changes in albumin simian virus 40 T antigen transgenic rat liver neoplasms. Cancer Res. 1997 Aug 15;57(16):3451–3456. [PubMed] [Google Scholar]
  41. Sargent T. D., Jagodzinski L. L., Yang M., Bonner J. Fine structure and evolution of the rat serum albumin gene. Mol Cell Biol. 1981 Oct;1(10):871–883. doi: 10.1128/mcb.1.10.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shim E. Y., Woodcock C., Zaret K. S. Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev. 1998 Jan 1;12(1):5–10. doi: 10.1101/gad.12.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Su H., Lu R., Chang J. C., Kan Y. W. Tissue-specific expression of herpes simplex virus thymidine kinase gene delivered by adeno-associated virus inhibits the growth of human hepatocellular carcinoma in athymic mice. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13891–13896. doi: 10.1073/pnas.94.25.13891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tronche F., Rollier A., Bach I., Weiss M. C., Yaniv M. The rat albumin promoter: cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation. Mol Cell Biol. 1989 Nov;9(11):4759–4766. doi: 10.1128/mcb.9.11.4759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zaret K. S., Liu J. K., DiPersio C. M. Site-directed mutagenesis reveals a liver transcription factor essential for the albumin transcriptional enhancer. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5469–5473. doi: 10.1073/pnas.87.14.5469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zaret K. S. Molecular genetics of early liver development. Annu Rev Physiol. 1996;58:231–251. doi: 10.1146/annurev.ph.58.030196.001311. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES