Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Mar 15;338(Pt 3):569–582.

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis.

F G Hegardt 1
PMCID: PMC1220089  PMID: 10051425

Abstract

Cytosolic and mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthases were first recognized as different chemical entities in 1975, when they were purified and characterized by Lane's group. Since then, the two enzymes have been studied extensively, one as a control site of the cholesterol biosynthetic pathway and the other as an important control site of ketogenesis. This review describes some key developments over the last 25 years that have led to our current understanding of the physiology of mitochondrial HMG-CoA synthase in the HMG-CoA pathway and in ketogenesis in the liver and small intestine of suckling animals. The enzyme is regulated by two systems: succinylation and desuccinylation in the short term, and transcriptional regulation in the long term. Both control mechanisms are influenced by nutritional and hormonal factors, which explains the incidence of ketogenesis in diabetes and starvation, during intense lipolysis, and in the foetal-neonatal and suckling-weaning transitions. The DNA-binding properties of the peroxisome-proliferator-activated receptor and other transcription factors on the nuclear-receptor-responsive element of the mitochondrial HMG-CoA synthase promoter have revealed how ketogenesis can be regulated by fatty acids. Finally, the expression of mitochondrial HMG-CoA synthase in the gonads and the correction of auxotrophy for mevalonate in cells deficient in cytosolic HMG-CoA synthase suggest that the mitochondrial enzyme may play a role in cholesterogenesis in gonadal and other tissues.

Full Text

The Full Text of this article is available as a PDF (378.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. H., Alho C. S., Asins G., Hegardt F. G., Marrero P. F. Gene expression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in a poorly ketogenic mammal: effect of starvation during the neonatal period of the piglet. Biochem J. 1997 May 15;324(Pt 1):65–73. doi: 10.1042/bj3240065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams S. H., Odle J. Plasma beta-hydroxybutyrate after octanoate challenge: attenuated ketogenic capacity in neonatal swine. Am J Physiol. 1993 Oct;265(4 Pt 2):R761–R765. doi: 10.1152/ajpregu.1993.265.4.R761. [DOI] [PubMed] [Google Scholar]
  3. Arias G., Asins G., Hegardt F. G., Serra D. The effect of dexamethasone treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats. Mol Cell Biochem. 1998 Jan;178(1-2):325–333. doi: 10.1023/a:1006875716407. [DOI] [PubMed] [Google Scholar]
  4. Arias G., Asins G., Hegardt F. G., Serra D. The effect of fasting/refeeding and insulin treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats. Arch Biochem Biophys. 1997 Apr 15;340(2):287–298. doi: 10.1006/abbi.1997.9911. [DOI] [PubMed] [Google Scholar]
  5. Arias G., Matas R., Asins G., Hegardt F. G., Serra D. The effect of fasting and insulin treatment on carnitine palmitoyl transferase I and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase mRNA levels in liver from suckling rats. Biochem Soc Trans. 1995 Aug;23(3):493S–493S. doi: 10.1042/bst023493s. [DOI] [PubMed] [Google Scholar]
  6. Asins G., Rosa J. L., Serra D., Gil-Gómez G., Ayté J., Bartrons R., Tauler A., Hegardt F. G. Gene expression of enzymes regulating ketogenesis and fatty acid metabolism in regenerating rat liver. Biochem J. 1994 Apr 1;299(Pt 1):65–69. doi: 10.1042/bj2990065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Asins G., Serra D., Arias G., Hegardt F. G. Developmental changes in carnitine palmitoyltransferases I and II gene expression in intestine and liver of suckling rats. Biochem J. 1995 Mar 1;306(Pt 2):379–384. doi: 10.1042/bj3060379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Asins G., Serra D., Miliar A., Caudevilla C., Matas R., Arias G., Hegardt F. G. Developmental changes in the phospho(enol)pyruvate carboxykinase gene expression in small intestine and liver of suckling rats. Arch Biochem Biophys. 1996 May 1;329(1):82–86. doi: 10.1006/abbi.1996.0194. [DOI] [PubMed] [Google Scholar]
  9. Ayté J., Gil-Gómez G., Hegardt F. G. Methylation of the regulatory region of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene leads to its transcriptional inactivation. Biochem J. 1993 Nov 1;295(Pt 3):807–812. doi: 10.1042/bj2950807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ayté J., Gil-Gómez G., Hegardt F. G. Nucleotide sequence of a rat liver cDNA encoding the cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase. Nucleic Acids Res. 1990 Jun 25;18(12):3642–3642. doi: 10.1093/nar/18.12.3642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ayté J., Gil-Gómez G., Hegardt F. G. Structural characterization of the 3' noncoding region of the gene encoding rat mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase. Gene. 1993 Jan 30;123(2):267–270. doi: 10.1016/0378-1119(93)90136-q. [DOI] [PubMed] [Google Scholar]
  12. Bailey E., Lockwood E. A. Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat. Enzyme. 1973;15(1):239–253. [PubMed] [Google Scholar]
  13. Beaudry M. A., Chiasson J. L., Exton J. H. Gluconeogenesis in the suckling rat. Am J Physiol. 1977 Sep;233(3):E175–E180. doi: 10.1152/ajpendo.1977.233.3.E175. [DOI] [PubMed] [Google Scholar]
  14. Benito M., Whitelaw E., Williamson D. H. Regulation of ketogenesis during the suckling-weanling transition in the rat. Studies with isolated hepatocytes. Biochem J. 1979 Apr 15;180(1):137–144. doi: 10.1042/bj1800137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Benvenisty N., Reshef L. Developmental expression and modification of genes. Biol Neonate. 1987;52(2):61–69. doi: 10.1159/000242685. [DOI] [PubMed] [Google Scholar]
  16. Bieber L. L., Markwell M. A., Blair M., Helmrath T. A. Studies on the development of carnitine palmitoyltransferase and fatty acid oxidation in liver mitochondria of neonatal pigs. Biochim Biophys Acta. 1973 Nov 29;326(2):145–154. doi: 10.1016/0005-2760(73)90240-3. [DOI] [PubMed] [Google Scholar]
  17. Blázquez C., Sánchez C., Velasco G., Guzmán M. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J Neurochem. 1998 Oct;71(4):1597–1606. doi: 10.1046/j.1471-4159.1998.71041597.x. [DOI] [PubMed] [Google Scholar]
  18. Boon M. R., Zammit V. A. Use of a selectively permeabilized isolated rat hepatocyte preparation to study changes in the properties of overt carnitine palmitoyltransferase activity in situ. Biochem J. 1988 Feb 1;249(3):645–652. doi: 10.1042/bj2490645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Boukaftane Y., Duncan A., Wang S., Labuda D., Robert M. F., Sarrazin J., Schappert K., Mitchell G. A. Human mitochondrial HMG CoA synthase: liver cDNA and partial genomic cloning, chromosome mapping to 1p12-p13, and possible role in vertebrate evolution. Genomics. 1994 Oct;23(3):552–559. doi: 10.1006/geno.1994.1542. [DOI] [PubMed] [Google Scholar]
  20. Boukaftane Y., Mitchell G. A. Cloning and characterization of the human mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase gene. Gene. 1997 Aug 22;195(2):121–126. doi: 10.1016/s0378-1119(97)00067-x. [DOI] [PubMed] [Google Scholar]
  21. Buesa C., Martínez-Gonzalez J., Casals N., Haro D., Piulachs M. D., Bellés X., Hegardt F. G. Blattella germanica has two HMG-CoA synthase genes. Both are regulated in the ovary during the gonadotrophic cycle. J Biol Chem. 1994 Apr 22;269(16):11707–11713. [PubMed] [Google Scholar]
  22. Békési A., Williamson D. H. An explanation for ketogenesis by the intestine of the suckling rat: the presence of an active hydroxymethylglutaryl-coenzyme A pathway. Biol Neonate. 1990;58(3):160–165. doi: 10.1159/000243256. [DOI] [PubMed] [Google Scholar]
  23. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  24. Carter M. E., Gulick T., Moore D. D., Kelly D. P. A pleiotropic element in the medium-chain acyl coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs. Mol Cell Biol. 1994 Jul;14(7):4360–4372. doi: 10.1128/mcb.14.7.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Casals N., Roca N., Guerrero M., Gil-Gómez G., Ayté J., Ciudad C. J., Hegardt F. G. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. Biochem J. 1992 Apr 1;283(Pt 1):261–264. doi: 10.1042/bj2830261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Caswell A. M., Bailey E. Studies on rat hepatic mitochondrial hydroxymethylglutaryl-CoA synthase during the perinatal period. Biol Neonate. 1983;43(5-6):263–268. doi: 10.1159/000241653. [DOI] [PubMed] [Google Scholar]
  27. Caswell A. M., Higham F. C., Bailey E. Hepatic lipogenesis and ketogenesis in the mother and fetus during postmaturity in the rat. J Dev Physiol. 1983 Oct;5(5):299–305. [PubMed] [Google Scholar]
  28. Chan J., Nakabayashi H., Wong N. C. HNF-4 increases activity of the rat Apo A1 gene. Nucleic Acids Res. 1993 Mar 11;21(5):1205–1211. doi: 10.1093/nar/21.5.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Chapman M. J., Miller L. R., Ontko J. A. Localization of the enzymes of ketogenesis in rat liver mitochondria. J Cell Biol. 1973 Aug;58(2):284–306. doi: 10.1083/jcb.58.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cherbuy C., Darcy-Vrillon B., Morel M. T., Pégorier J. P., Duée P. H. Effect of germfree state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose, and glutamine. Gastroenterology. 1995 Dec;109(6):1890–1899. doi: 10.1016/0016-5085(95)90756-4. [DOI] [PubMed] [Google Scholar]
  31. Clinkenbeard K. D., Reed W. D., Mooney R. A., Lane M. D. Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J Biol Chem. 1975 Apr 25;250(8):3108–3116. [PubMed] [Google Scholar]
  32. Costa R. H., Grayson D. R., Darnell J. E., Jr Multiple hepatocyte-enriched nuclear factors function in the regulation of transthyretin and alpha 1-antitrypsin genes. Mol Cell Biol. 1989 Apr;9(4):1415–1425. doi: 10.1128/mcb.9.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cullingford T. E., Dolphin C. T., Bhakoo K. K., Peuchen S., Canevari L., Clark J. B. Molecular cloning of rat mitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase and detection of the corresponding mRNA and of those encoding the remaining enzymes comprising the ketogenic 3-hydroxy-3-methylglutaryl-CoA cycle in central nervous system of suckling rat. Biochem J. 1998 Jan 15;329(Pt 2):373–381. doi: 10.1042/bj3290373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Dashti N., Ontko J. A. Rate-limiting function of 3-hydroxy-3-methylglutaryl-coenzyme A synthase in ketogenesis. Biochem Med. 1979 Dec;22(3):365–374. doi: 10.1016/0006-2944(79)90024-3. [DOI] [PubMed] [Google Scholar]
  35. Decaux J. F., Ferré P., Girard J. Effect of weaning on different diets on hepatic gluconeogenesis in the rat. Biol Neonate. 1986;50(6):331–336. doi: 10.1159/000242617. [DOI] [PubMed] [Google Scholar]
  36. Decaux J. F., Robin D., Robin P., Ferré P., Girard J. Intramitochondrial factors controlling hepatic fatty acid oxidation at weaning in the rat. FEBS Lett. 1988 May 9;232(1):156–158. doi: 10.1016/0014-5793(88)80407-1. [DOI] [PubMed] [Google Scholar]
  37. Duée P. H., Pégorier J. P., Quant P. A., Herbin C., Kohl C., Girard J. Hepatic ketogenesis in newborn pigs is limited by low mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity. Biochem J. 1994 Feb 15;298(Pt 1):207–212. doi: 10.1042/bj2980207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Duée P. H., Pégorier J. P., Quant P. A., Herbin C., Kohl C., Girard J. Hepatic ketogenesis in newborn pigs is limited by low mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity. Biochem J. 1994 Feb 15;298(Pt 1):207–212. doi: 10.1042/bj2980207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Escriva F., Ferre P., Robin D., Robin P., Decaux J. F., Girard J. Evidence that the development of hepatic fatty acid oxidation at birth in the rat is concomitant with an increased intramitochondrial CoA concentration. Eur J Biochem. 1986 May 2;156(3):603–607. doi: 10.1111/j.1432-1033.1986.tb09620.x. [DOI] [PubMed] [Google Scholar]
  40. Foster D. W. Banting lecture 1984. From glycogen to ketones--and back. Diabetes. 1984 Dec;33(12):1188–1199. doi: 10.2337/diab.33.12.1188. [DOI] [PubMed] [Google Scholar]
  41. Gentz J., Bengtsson G., Hakkarainen J., Hellström R., Persson B. Metabolic effects of starvation during neonatal period in the piglet. Am J Physiol. 1970 Mar;218(3):662–668. doi: 10.1152/ajplegacy.1970.218.3.662. [DOI] [PubMed] [Google Scholar]
  42. Gil-Gómez G., Ayté J., Hegardt F. G. The rat mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme-A-synthase gene contains elements that mediate its multihormonal regulation and tissue specificity. Eur J Biochem. 1993 Apr 15;213(2):773–779. doi: 10.1111/j.1432-1033.1993.tb17819.x. [DOI] [PubMed] [Google Scholar]
  43. Gil G., Brown M. S., Goldstein J. L. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster. II. Isolation of the gene and characterization of the 5' flanking region. J Biol Chem. 1986 Mar 15;261(8):3717–3724. [PubMed] [Google Scholar]
  44. Gil G., Goldstein J. L., Slaughter C. A., Brown M. S. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster. I. Isolation and sequencing of a full-length cDNA. J Biol Chem. 1986 Mar 15;261(8):3710–3716. [PubMed] [Google Scholar]
  45. Girard J., Ferré P., Pégorier J. P., Duée P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992 Apr;72(2):507–562. doi: 10.1152/physrev.1992.72.2.507. [DOI] [PubMed] [Google Scholar]
  46. Grantham B. D., Zammit V. A. Restoration of the properties of carnitine palmitoyltransferase I in liver mitochondria during re-feeding of starved rats. Biochem J. 1986 Oct 15;239(2):485–488. doi: 10.1042/bj2390485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Grantham B. D., Zammit V. A. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes. Biochem J. 1988 Jan 15;249(2):409–414. doi: 10.1042/bj2490409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Grompe M., al-Dhalimy M., Finegold M., Ou C. N., Burlingame T., Kennaway N. G., Soriano P. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 1993 Dec;7(12A):2298–2307. doi: 10.1101/gad.7.12a.2298. [DOI] [PubMed] [Google Scholar]
  49. Hahn P., Taller M. Ketone formation in the intestinal mucosa of infant rats. Life Sci. 1987 Sep 21;41(12):1525–1528. doi: 10.1016/0024-3205(87)90718-1. [DOI] [PubMed] [Google Scholar]
  50. Hahn P., Taller M., Srubiski L., Kirby L. Regulation of ketone formation and phosphoenolpyruvate carboxykinase activity in the small intestinal mucosa of infant rats. Biol Neonate. 1991;60(1):1–6. doi: 10.1159/000243382. [DOI] [PubMed] [Google Scholar]
  51. Hahn P., Wei-Ning H. Gluconeogenesis from lactate in the small intestinal mucosa of suckling rats. Pediatr Res. 1986 Dec;20(12):1321–1323. doi: 10.1203/00006450-198612000-00027. [DOI] [PubMed] [Google Scholar]
  52. Hall R. K., Sladek F. M., Granner D. K. The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):412–416. doi: 10.1073/pnas.92.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Henning S. J., Leeper L. L. Coordinate loss of glucocorticoid responsiveness by intestinal enzymes during postnatal development. Am J Physiol. 1982 Feb;242(2):G89–G94. doi: 10.1152/ajpgi.1982.242.2.G89. [DOI] [PubMed] [Google Scholar]
  54. Hertz R., Bishara-Shieban J., Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs. Suppression of apolipoprotein C-III. J Biol Chem. 1995 Jun 2;270(22):13470–13475. doi: 10.1074/jbc.270.22.13470. [DOI] [PubMed] [Google Scholar]
  55. Holness M. J., French T. J., Schofield P. S., Sugden M. C. The relationship between fat synthesis and oxidation in the liver after re-feeding and its regulation by thyroid hormone. Biochem J. 1987 Nov 1;247(3):621–626. doi: 10.1042/bj2470621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Hua X., Yokoyama C., Wu J., Briggs M. R., Brown M. S., Goldstein J. L., Wang X. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11603–11607. doi: 10.1073/pnas.90.24.11603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Hwung Y. P., Crowe D. T., Wang L. H., Tsai S. Y., Tsai M. J. The COUP transcription factor binds to an upstream promoter element of the rat insulin II gene. Mol Cell Biol. 1988 May;8(5):2070–2077. doi: 10.1128/mcb.8.5.2070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ishitani K., Niitsu Y., Listowsky I. Characterization of the different polypeptide components and analysis of subunit assembly in ferritin. J Biol Chem. 1975 Apr 25;250(8):3124–3128. [PubMed] [Google Scholar]
  59. Issemann I., Prince R., Tugwood J., Green S. A role for fatty acids and liver fatty acid binding protein in peroxisome proliferation? Biochem Soc Trans. 1992 Nov;20(4):824–827. doi: 10.1042/bst0200824. [DOI] [PubMed] [Google Scholar]
  60. Juge-Aubry C., Pernin A., Favez T., Burger A. G., Wahli W., Meier C. A., Desvergne B. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region. J Biol Chem. 1997 Oct 3;272(40):25252–25259. doi: 10.1074/jbc.272.40.25252. [DOI] [PubMed] [Google Scholar]
  61. Katayama S., Adachi N., Takao K., Nakagawa T., Matsuda H., Kawamukai M. Molecular cloning and sequencing of the hcs gene, which encodes 3-hydroxy-3-methylglutaryl coenzyme A synthase of Schizosaccharomyces pombe. Yeast. 1995 Dec;11(15):1533–1537. doi: 10.1002/yea.320111509. [DOI] [PubMed] [Google Scholar]
  62. Kattar-Cooley P. A., Wang H. H., Mende-Mueller L. M., Miziorko H. M. Avian liver 3-hydroxy-3-methylglutaryl-CoA synthase: distinct genes encode the cholesterogenic and ketogenic isozymes. Arch Biochem Biophys. 1990 Dec;283(2):523–529. doi: 10.1016/0003-9861(90)90677-q. [DOI] [PubMed] [Google Scholar]
  63. Kedinger M., Simon P. M., Raul F., Grenier J. F., Haffen K. The effect of dexamethasone on the development of rat intestinal brush border enzymes in organ culture. Dev Biol. 1980 Jan;74(1):9–21. doi: 10.1016/0012-1606(80)90049-4. [DOI] [PubMed] [Google Scholar]
  64. Kelsey G., Ruppert S., Beermann F., Grund C., Tanguay R. M., Schütz G. Rescue of mice homozygous for lethal albino deletions: implications for an animal model for the human liver disease tyrosinemia type 1. Genes Dev. 1993 Dec;7(12A):2285–2297. doi: 10.1101/gad.7.12a.2285. [DOI] [PubMed] [Google Scholar]
  65. Kimura A., Nishiyori A., Murakami T., Tsukamoto T., Hata S., Osumi T., Okamura R., Mori M., Takiguchi M. Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) represses transcription from the promoter of the gene for ornithine transcarbamylase in a manner antagonistic to hepatocyte nuclear factor-4 (HNF-4). J Biol Chem. 1993 May 25;268(15):11125–11133. [PubMed] [Google Scholar]
  66. Krebs H. A., Hems R. Fatty acid metabolism in the perfused rat liver. Biochem J. 1970 Sep;119(3):525–533. doi: 10.1042/bj1190525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Ladias J. A., Hadzopoulou-Cladaras M., Kardassis D., Cardot P., Cheng J., Zannis V., Cladaras C. Transcriptional regulation of human apolipoprotein genes ApoB, ApoCIII, and ApoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J Biol Chem. 1992 Aug 5;267(22):15849–15860. [PubMed] [Google Scholar]
  68. Lascelles C. V., Quant P. A. Investigation of human hepatic mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase in postmortem or biopsy tissue. Clin Chim Acta. 1997 Apr 4;260(1):85–96. doi: 10.1016/s0009-8981(96)06507-2. [DOI] [PubMed] [Google Scholar]
  69. Leeper L. L., Henning S. J. Hormonal control of postnatal development of ileal neuraminidase and acid beta-galactosidase. Biol Neonate. 1983;44(1):28–35. doi: 10.1159/000241691. [DOI] [PubMed] [Google Scholar]
  70. Legraverend C., Eguchi H., Ström A., Lahuna O., Mode A., Tollet P., Westin S., Gustafsson J. A. Transactivation of the rat CYP2C13 gene promoter involves HNF-1, HNF-3, and members of the orphan receptor subfamily. Biochemistry. 1994 Aug 23;33(33):9889–9897. doi: 10.1021/bi00199a010. [DOI] [PubMed] [Google Scholar]
  71. Levenson C. W., Shay N. F., Lee-Ambrose L. M., Cousins R. J. Regulation of cysteine-rich intestinal protein by dexamethasone in the neonatal rat. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):712–715. doi: 10.1073/pnas.90.2.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Liimatta M., Towle H. C., Clarke S., Jump D. B. Dietary polyunsaturated fatty acids interfere with the insulin/glucose activation of L-type pyruvate kinase gene transcription. Mol Endocrinol. 1994 Sep;8(9):1147–1153. doi: 10.1210/mend.8.9.7838147. [DOI] [PubMed] [Google Scholar]
  73. Lin X., Adams S. H., Odle J. Acetate represents a major product of heptanoate and octanoate beta-oxidation in hepatocytes isolated from neonatal piglets. Biochem J. 1996 Aug 15;318(Pt 1):235–240. doi: 10.1042/bj3180235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Liu Z., Towle H. C. Functional synergism in the carbohydrate-induced activation of liver-type pyruvate kinase gene expression. Biochem J. 1995 May 15;308(Pt 1):105–111. doi: 10.1042/bj3080105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Lockwood E. A., Bailey E. The course of ketosis and the activity of key enzymes of ketogenesis and ketone-body utilization during development of the postnatal rat. Biochem J. 1971 Aug;124(1):249–254. doi: 10.1042/bj1240249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Lowe D. M., Tubbs P. K. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase from ox liver. Properties of its acetyl derivative. Biochem J. 1985 Apr 15;227(2):601–607. doi: 10.1042/bj2270601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Lowe D. M., Tubbs P. K. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase from ox liver. Purification, molecular and catalytic properties. Biochem J. 1985 Apr 15;227(2):591–599. doi: 10.1042/bj2270591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Lowe D. M., Tubbs P. K. Succinylation and inactivation of 3-hydroxy-3-methylglutaryl-CoA synthase by succinyl-CoA and its possible relevance to the control of ketogenesis. Biochem J. 1985 Nov 15;232(1):37–42. doi: 10.1042/bj2320037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Martin G. R., Henning S. J. Enzymic development of the small intestine: are glucocorticoids necessary? Am J Physiol. 1984 Jun;246(6 Pt 1):G695–G699. doi: 10.1152/ajpgi.1984.246.6.G695. [DOI] [PubMed] [Google Scholar]
  80. Martínez-González J., Buesa C., Piulachs M. D., Bellés X., Hegardt F. G. 3-Hydroxy-3-methylglutaryl-coenzyme-A synthase from Blattella germanica. Cloning, expression, developmental pattern and tissue expression. Eur J Biochem. 1993 Oct 15;217(2):691–699. doi: 10.1111/j.1432-1033.1993.tb18295.x. [DOI] [PubMed] [Google Scholar]
  81. Mascaró C., Acosta E., Ortiz J. A., Marrero P. F., Hegardt F. G., Haro D. Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem. 1998 Apr 10;273(15):8560–8563. doi: 10.1074/jbc.273.15.8560. [DOI] [PubMed] [Google Scholar]
  82. Mascaró C., Buesa C., Ortiz J. A., Haro D., Hegardt F. G. Molecular cloning and tissue expression of human mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Arch Biochem Biophys. 1995 Mar 10;317(2):385–390. doi: 10.1006/abbi.1995.1178. [DOI] [PubMed] [Google Scholar]
  83. Mayes P. A., Felts J. M. Regulation of fat metabolism of the liver. Nature. 1967 Aug 12;215(5102):716–718. doi: 10.1038/215716a0. [DOI] [PubMed] [Google Scholar]
  84. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  85. McGarry J. D., Foster D. W. The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem. 1971 Feb 25;246(4):1149–1159. [PubMed] [Google Scholar]
  86. McGarry J. D., Foster D. W. The regulation of ketogenesis from oleic acid and the influence of antiketogenic agents. J Biol Chem. 1971 Oct 25;246(20):6247–6253. [PubMed] [Google Scholar]
  87. McGrane M. M., Yun J. S., Moorman A. F., Lamers W. H., Hendrick G. K., Arafah B. M., Park E. A., Wagner T. E., Hanson R. W. Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice. J Biol Chem. 1990 Dec 25;265(36):22371–22379. [PubMed] [Google Scholar]
  88. Meertens L. M., Miyata K. S., Cechetto J. D., Rachubinski R. A., Capone J. P. A mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARalpha. EMBO J. 1998 Dec 1;17(23):6972–6978. doi: 10.1093/emboj/17.23.6972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Middleton B. The kinetic mechanism of 3-hydroxy-3-methylglutaryl-coenzyme A synthase from baker's yeast. Biochem J. 1972 Jan;126(1):35–47. doi: 10.1042/bj1260035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Middleton B., Tubbs P. K. The purification and some properties of 3-hydroxy-3-methylglutaryl-coenzyme A synthase from Baker's yeast. Biochem J. 1972 Jan;126(1):27–34. doi: 10.1042/bj1260027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Misra I., Charlier H. A., Jr, Miziorko H. M. Avian cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase: evaluation of the role of cysteines in reaction chemistry. Biochim Biophys Acta. 1995 Mar 15;1247(2):253–259. doi: 10.1016/0167-4838(94)00223-4. [DOI] [PubMed] [Google Scholar]
  92. Misra I., Miziorko H. M. Evidence for the interaction of avian 3-hydroxy-3-methylglutaryl-CoA synthase histidine 264 with acetoacetyl-CoA. Biochemistry. 1996 Jul 23;35(29):9610–9616. doi: 10.1021/bi9605797. [DOI] [PubMed] [Google Scholar]
  93. Miziorko H. M., Behnke C. E. Active-site-directed inhibition of 3-hydroxy-3-methylglutaryl coenzyme A synthase by 3-chloropropionyl coenzyme A. Biochemistry. 1985 Jun 18;24(13):3174–3179. doi: 10.1021/bi00334a015. [DOI] [PubMed] [Google Scholar]
  94. Miziorko H. M., Behnke C. E., Ahmad F. Chemical events in chloropropionyl coenzyme A inactivation of acyl coenzyme A utilizing enzymes. Biochemistry. 1989 Jul 11;28(14):5759–5764. doi: 10.1021/bi00440a009. [DOI] [PubMed] [Google Scholar]
  95. Miziorko H. M., Behnke C. E. Amino acid sequence of an active site peptide of avian liver mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. J Biol Chem. 1985 Nov 5;260(25):13513–13516. [PubMed] [Google Scholar]
  96. Miziorko H. M., Behnke C. E., Wang H. H. Mapping of reactive sulfhydryls in avian liver 3-hydroxy-3-methylglutaryl coenzyme A synthase. Biochim Biophys Acta. 1990 Dec 5;1041(3):273–278. doi: 10.1016/0167-4838(90)90284-m. [DOI] [PubMed] [Google Scholar]
  97. Miziorko H. M., Clinkenbeard K. D., Reed W. D., Lane M. D. 3-Hydroxy-3-methylglutaryl coenzyme A synthase. Evidence for an acetyl-S-enzyme intermediate and identification of a cysteinyl sulfhydryl as the site of acetylation. J Biol Chem. 1975 Aug 10;250(15):5768–5773. [PubMed] [Google Scholar]
  98. Miziorko H. M., Lane M. D. 3-Hydroxy-3-methylgutaryl-CoA synthase. Participation of acetyl-S-enzyme and enzyme-S-hydroxymethylgutaryl-SCoA intermediates in the reaction. J Biol Chem. 1977 Feb 25;252(4):1414–1420. [PubMed] [Google Scholar]
  99. Miziorko H. M., Shortle D., Lane M. D. Trapping of a novel coenzyme A containing intermediate of 3-hydroxy-3-methylglutaryl-CoA synthase. Biochem Biophys Res Commun. 1976 Mar 8;69(1):92–98. doi: 10.1016/s0006-291x(76)80277-x. [DOI] [PubMed] [Google Scholar]
  100. Montamat F., Guilloton M., Karst F., Delrot S. Isolation and characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl-coenzyme A synthase. Gene. 1995 Dec 29;167(1-2):197–201. doi: 10.1016/0378-1119(95)00642-7. [DOI] [PubMed] [Google Scholar]
  101. O'Brien R. M., Lucas P. C., Forest C. D., Magnuson M. A., Granner D. K. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science. 1990 Aug 3;249(4968):533–537. doi: 10.1126/science.2166335. [DOI] [PubMed] [Google Scholar]
  102. Odle J., Lin X., van Kempen T. A., Drackley J. K., Adams S. H. Carnitine palmitoyltransferase modulation of hepatic fatty acid metabolism and radio-HPLC evidence for low ketogenesis in neonatal pigs. J Nutr. 1995 Oct;125(10):2541–2549. doi: 10.1093/jn/125.10.2541. [DOI] [PubMed] [Google Scholar]
  103. Ortiz J. A., Gil-Gómez G., Casaroli-Marano R. P., Vilaró S., Hegardt F. G., Haro D. Transfection of the ketogenic mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase cDNA into Mev-1 cells corrects their auxotrophy for mevalonate. J Biol Chem. 1994 Nov 18;269(46):28523–28526. [PubMed] [Google Scholar]
  104. Ortiz J. A., Mallolas J., Nicot C., Bofarull J., Rodríguez J. C., Hegardt F. G., Haro D., Marrero P. F. Isolation of pig mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene promoter: characterization of a peroxisome proliferator-responsive element. Biochem J. 1999 Jan 15;337(Pt 2):329–335. [PMC free article] [PubMed] [Google Scholar]
  105. Page M. A., Tubbs P. K. Some properties of 3-hydroxy-3-methylglutaryl-coenzyme A synthase from ox liver. Biochem J. 1978 Sep 1;173(3):925–928. doi: 10.1042/bj1730925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Palmer T. N., Watts D. I., Sugden M. C. Can isolated spans of the tricarboxylic acid cycle operate independently? L-proline, oleate and butyrate metabolism in rat hepatocytes. Biochem Int. 1983 Apr;6(4):433–441. [PubMed] [Google Scholar]
  107. Patel Y. M., Yun J. S., Liu J., McGrane M. M., Hanson R. W. An analysis of regulatory elements in the phosphoenolpyruvate carboxykinase (GTP) gene which are responsible for its tissue-specific expression and metabolic control in transgenic mice. J Biol Chem. 1994 Feb 25;269(8):5619–5628. [PubMed] [Google Scholar]
  108. Pignataro O. P., Radicella J. P., Calvo J. C., Charreau E. H. Mitochondrial biosynthesis of cholesterol in Leydig cells from rat testis. Mol Cell Endocrinol. 1983 Nov;33(1):53–67. doi: 10.1016/0303-7207(83)90056-4. [DOI] [PubMed] [Google Scholar]
  109. Pégorier J. P., Duée P. H., Girard J., Peret J. Metabolic fate of non-esterified fatty acids in isolated hepatocytes from newborn and young pigs. Evidence for a limited capacity for oxidation and increased capacity for esterification. Biochem J. 1983 Apr 15;212(1):93–97. doi: 10.1042/bj2120093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Pégorier J. P., Duée P. H., Girard J., Peret J. Metabolic fate of non-esterified fatty acids in isolated hepatocytes from newborn and young pigs. Evidence for a limited capacity for oxidation and increased capacity for esterification. Biochem J. 1983 Apr 15;212(1):93–97. doi: 10.1042/bj2120093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Quant P. A. Activity and expression of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the starved-to-fed transition. Biochem Soc Trans. 1990 Oct;18(5):994–995. doi: 10.1042/bst0180994. [DOI] [PubMed] [Google Scholar]
  112. Quant P. A., Robin D., Robin P., Ferre P., Brand M. D., Girard J. Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. Eur J Biochem. 1991 Jan 30;195(2):449–454. doi: 10.1111/j.1432-1033.1991.tb15724.x. [DOI] [PubMed] [Google Scholar]
  113. Quant P. A., Robin D., Robin P., Girard J., Brand M. D. A top-down control analysis in isolated rat liver mitochondria: can the 3-hydroxy-3-methylglutaryl-CoA pathway be rate-controlling for ketogenesis? Biochim Biophys Acta. 1993 Feb 13;1156(2):135–143. doi: 10.1016/0304-4165(93)90128-u. [DOI] [PubMed] [Google Scholar]
  114. Quant P. A., Tubbs P. K., Brand M. D. Glucagon activates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. Eur J Biochem. 1990 Jan 12;187(1):169–174. doi: 10.1111/j.1432-1033.1990.tb15291.x. [DOI] [PubMed] [Google Scholar]
  115. Quant P. A., Tubbs P. K., Brand M. D. Treatment of rats with glucagon or mannoheptulose increases mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity and decreases succinyl-CoA content in liver. Biochem J. 1989 Aug 15;262(1):159–164. doi: 10.1042/bj2620159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Reed W. D., Clinkenbeard D., Lane M. D. Molecular and catalytic properties of mitochondrial (ketogenic) 3-hydroxy-3-methylglutaryl coenzyme A synthase of liver. J Biol Chem. 1975 Apr 25;250(8):3117–3123. [PubMed] [Google Scholar]
  117. Rodríguez J. C., Gil-Gómez G., Hegardt F. G., Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem. 1994 Jul 22;269(29):18767–18772. [PubMed] [Google Scholar]
  118. Rodríguez J. C., Ortiz J. A., Hegardt F. G., Haro D. Chicken ovalbumin upstream-promoter transcription factor (COUP-TF) could act as a transcriptional activator or repressor of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Biochem J. 1997 Sep 1;326(Pt 2):587–592. doi: 10.1042/bj3260587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Rodríguez J. C., Ortiz J. A., Hegardt F. G., Haro D. The hepatocyte nuclear factor 4 (HNF-4) represses the mitochondrial HMG-CoA synthase gene. Biochem Biophys Res Commun. 1998 Jan 26;242(3):692–696. doi: 10.1006/bbrc.1997.8032. [DOI] [PubMed] [Google Scholar]
  120. Royo T., Ayté J., Albericio F., Giralt E., Haro D., Hegardt F. G. Diurnal rhythm of rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase. Biochem J. 1991 Nov 15;280(Pt 1):61–64. doi: 10.1042/bj2800061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Royo T., Pedragosa M. J., Ayté J., Gil-Gómez G., Vilaró S., Hegardt F. G. Immunolocalization of mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase in rat liver. J Cell Physiol. 1995 Jan;162(1):103–109. doi: 10.1002/jcp.1041620112. [DOI] [PubMed] [Google Scholar]
  122. Royo T., Pedragosa M. J., Ayté J., Gil-Gómez G., Vilaró S., Hegardt F. G. Testis and ovary express the gene for the ketogenic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. J Lipid Res. 1993 Jun;34(6):867–874. [PubMed] [Google Scholar]
  123. Runquist M., Ericsson J., Thelin A., Chojnacki T., Dallner G. Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. J Biol Chem. 1994 Feb 25;269(8):5804–5809. [PubMed] [Google Scholar]
  124. Ruppert S., Boshart M., Bosch F. X., Schmid W., Fournier R. E., Schütz G. Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes. Cell. 1990 Jun 1;61(5):895–904. doi: 10.1016/0092-8674(90)90200-x. [DOI] [PubMed] [Google Scholar]
  125. Ruppert S., Kelsey G., Schedl A., Schmid E., Thies E., Schütz G. Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice. Genes Dev. 1992 Aug;6(8):1430–1443. doi: 10.1101/gad.6.8.1430. [DOI] [PubMed] [Google Scholar]
  126. Russ A. P., Ruzicka V., Maerz W., Appelhans H., Gross W. Amplification and direct sequencing of a cDNA encoding human cytosolic 3-hydroxy-3-methylglutaryl-coenzyme A synthase. Biochim Biophys Acta. 1992 Oct 20;1132(3):329–331. doi: 10.1016/0167-4781(92)90172-v. [DOI] [PubMed] [Google Scholar]
  127. Sagami I., Tsai S. Y., Wang H., Tsai M. J., O'Malley B. W. Identification of two factors required for transcription of the ovalbumin gene. Mol Cell Biol. 1986 Dec;6(12):4259–4267. doi: 10.1128/mcb.6.12.4259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Schaeffer E., Guillou F., Part D., Zakin M. M. A different combination of transcription factors modulates the expression of the human transferrin promoter in liver and Sertoli cells. J Biol Chem. 1993 Nov 5;268(31):23399–23408. [PubMed] [Google Scholar]
  129. Schnitzer-Polokoff R., von Gunten C., Logel J., Torget R., Sinensky M. Isolation and characterization of a mammalian cell mutant defective in 3-hydroxy-3-methylglutaryl coenzyme A synthase. J Biol Chem. 1982 Jan 10;257(1):472–476. [PubMed] [Google Scholar]
  130. Schofield P. S., French T. J., Sugden M. C. Ketone-body metabolism after surgical stress or partial hepatectomy. Evidence for decreased ketogenesis and a site of control distal to carnitine palmitoyltransferase I. Biochem J. 1987 Jan 15;241(2):475–481. doi: 10.1042/bj2410475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Serra D., Asins G., Hegardt F. G. Ketogenic mitochondrial 3-hydroxy 3-methylglutaryl-CoA synthase gene expression in intestine and liver of suckling rats. Arch Biochem Biophys. 1993 Mar;301(2):445–448. doi: 10.1006/abbi.1993.1169. [DOI] [PubMed] [Google Scholar]
  132. Serra D., Bellido D., Asins G., Arias G., Vilaró S., Hegardt F. G. The expression of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme-A synthase in neonatal rat intestine and liver is under transcriptional control. Eur J Biochem. 1996 Apr 1;237(1):16–24. doi: 10.1111/j.1432-1033.1996.0016n.x. [DOI] [PubMed] [Google Scholar]
  133. Serra D., Casals N., Asins G., Royo T., Ciudad C. J., Hegardt F. G. Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes. Arch Biochem Biophys. 1993 Nov 15;307(1):40–45. doi: 10.1006/abbi.1993.1557. [DOI] [PubMed] [Google Scholar]
  134. Serra D., Fillat C., Matas R., Bosch F., Hegardt F. G. Tissue-specific expression and dietary regulation of chimeric mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase/human growth hormone gene in transgenic mice. J Biol Chem. 1996 Mar 29;271(13):7529–7534. doi: 10.1074/jbc.271.13.7529. [DOI] [PubMed] [Google Scholar]
  135. Shah J., Bailey E. Changes in the activities of the enzymes of hepatic ketogenesis in the rat between late fetal life and weaning. Enzyme. 1977;22(1):35–40. doi: 10.1159/000458505. [DOI] [PubMed] [Google Scholar]
  136. Siess E. A., Fahimi F. M., Wieland O. H. Decrease by glucagon in hepatic succinyl-CoA. Biochem Biophys Res Commun. 1980 Jul 16;95(1):205–211. doi: 10.1016/0006-291x(80)90725-1. [DOI] [PubMed] [Google Scholar]
  137. Sly M. R., Walker D. G. A comparison of lipid metabolism in hepatocytes isolated from fed and starved neonatal and adult rats. Comp Biochem Physiol B. 1978;61(4):501–506. doi: 10.1016/0305-0491(78)90042-1. [DOI] [PubMed] [Google Scholar]
  138. Späth G. F., Weiss M. C. Hepatocyte nuclear factor 4 expression overcomes repression of the hepatic phenotype in dedifferentiated hepatoma cells. Mol Cell Biol. 1997 Apr;17(4):1913–1922. doi: 10.1128/mcb.17.4.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Swiatek K. R., Kipnis D. M., Mason G., Chao K. L., Cornblath M. Starvation hypoglycemia in newborn pigs. Am J Physiol. 1968 Feb;214(2):400–405. doi: 10.1152/ajplegacy.1968.214.2.400. [DOI] [PubMed] [Google Scholar]
  140. Thumelin S., Esser V., Charvy D., Kolodziej M., Zammit V. A., McGarry D., Girard J., Pegorier J. P. Expression of liver carnitine palmitoyltransferase I and II genes during development in the rat. Biochem J. 1994 Jun 1;300(Pt 2):583–587. doi: 10.1042/bj3000583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Thumelin S., Forestier M., Girard J., Pegorier J. P. Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochem J. 1993 Jun 1;292(Pt 2):493–496. doi: 10.1042/bj2920493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Tian J. M., Schibler U. Tissue-specific expression of the gene encoding hepatocyte nuclear factor 1 may involve hepatocyte nuclear factor 4. Genes Dev. 1991 Dec;5(12A):2225–2234. doi: 10.1101/gad.5.12a.2225. [DOI] [PubMed] [Google Scholar]
  143. Tosh D., Alberti G. M., Agius L. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Biochem J. 1988 Nov 15;256(1):197–204. doi: 10.1042/bj2560197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Tugwood J. D., Issemann I., Anderson R. G., Bundell K. R., McPheat W. L., Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 1992 Feb;11(2):433–439. doi: 10.1002/j.1460-2075.1992.tb05072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Valera A., Pelegrin M., Asins G., Fillat C., Sabater J., Pujol A., Hegardt F. G., Bosch F. Overexpression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in transgenic mice causes hepatic hyperketogenesis. J Biol Chem. 1994 Mar 4;269(9):6267–6270. [PubMed] [Google Scholar]
  146. Van Harken D. R., Dixon C. W., Heimberg M. Hepatic lipid metabolism in experimental diabetes. V. The effect of concentration of oleate on metabolism of triglycerides and on ketogenesis. J Biol Chem. 1969 May 10;244(9):2278–2285. [PubMed] [Google Scholar]
  147. Watford M., Tatro A. V. Phosphoenolpyruvate carboxykinase of rat small intestine: distribution and regulation of activity and mRNA levels. J Nutr. 1989 Feb;119(2):268–272. doi: 10.1093/jn/119.2.268. [DOI] [PubMed] [Google Scholar]
  148. Wegener A., Gimbel W., Werner T., Hani J., Ernst D., Sandermann H., Jr Molecular cloning of ozone-inducible protein from Pinus sylvestris L. with high sequence similarity to vertebrate 3-hydroxy-3-methylglutaryl-CoA-synthase. Biochim Biophys Acta. 1997 Feb 28;1350(3):247–252. doi: 10.1016/s0005-2760(96)00161-0. [DOI] [PubMed] [Google Scholar]
  149. Williamson D. H., Bates M. W., Krebs H. A. Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J. 1968 Jul;108(3):353–361. doi: 10.1042/bj1080353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Williamson D. H., Whitelaw E. Physiological aspects of the regulation of ketogenesis. Biochem Soc Symp. 1978;(43):137–161. [PubMed] [Google Scholar]
  151. Winrow C. J., Marcus S. L., Miyata K. S., Zhang B., Capone J. P., Rachubinski R. A. Transactivation of the peroxisome proliferator-activated receptor is differentially modulated by hepatocyte nuclear factor-4. Gene Expr. 1994;4(1-2):53–62. [PMC free article] [PubMed] [Google Scholar]
  152. Xanthopoulos K. G., Prezioso V. R., Chen W. S., Sladek F. M., Cortese R., Darnell J. E., Jr The different tissue transcription patterns of genes for HNF-1, C/EBP, HNF-3, and HNF-4, protein factors that govern liver-specific transcription. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3807–3811. doi: 10.1073/pnas.88.9.3807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Yokoyama C., Wang X., Briggs M. R., Admon A., Wu J., Hua X., Goldstein J. L., Brown M. S. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187–197. [PubMed] [Google Scholar]
  154. Yoo-Warren H., Monahan J. E., Short J., Short H., Bruzel A., Wynshaw-Boris A., Meisner H. M., Samols D., Hanson R. W. Isolation and characterization of the gene coding for cytosolic phosphoenolpyruvate carboxykinase (GTP) from the rat. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3656–3660. doi: 10.1073/pnas.80.12.3656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES