Abstract
Populations of hepatocytes in primary culture were loaded with fura 2 and the effects of extracellular heavy-metal ions were examined under conditions that allowed changes in fura 2 fluorescence (R340/360, the ratio of fluorescence recorded at 340 and 360 nm) to be directly attributed to changes in cytosolic free [Ca2+] ([Ca2+]i). In Ca2+-free media, Ni2+ [EC50 (concentration causing 50% stimulation) approximately 24+/-9 microM] caused reversible increases in [Ca2+]i that resulted from mobilization of the same intracellular Ca2+ stores as were released by [Arg8]vasopressin. The effects of Ni2+ were not mimicked by increasing the extracellular [Mg2+], by addition of MnCl2, CoCl2 or CdCl2 or by decreasing the extracellular pH from 7.3 to 6.0; nor were they observed in cultures of smooth muscle, endothelial cells or pituitary cells. CuCl2 (80 microM), ZnCl2 (80 microM) and LaCl3 (5 mM) mimicked the ability of Ni2+ to evoke Ca2+ mobilization. The response to La3+ was sustained even in the absence of extracellular Ca2+, probably because La3+ also inhibited Ca2+ extrusion. Although Ni2+ entered hepatocytes, from the extent to which it quenched fura 2 fluorescence the free cytosolic [Ni2+] ([Ni2+]i) was estimated to be <5 nM at the peak of the maximal Ni2+-evoked Ca2+ signals and there was no correlation between [Ni2+]i and the amplitude of the evoked increases in [Ca2+]i. We conclude that extracellular Ni2+, Zn2+, Cu2+ and La3+, but not all heavy-metal ions, evoke an increase in [Ca2+]i in hepatocytes by stimulating release of the hormone-sensitive intracellular Ca2+ stores and that they may do so by interacting with a specific cell-surface ion receptor. This putative ion receptor may be important in allowing hepatocytes to contribute to regulation of plasma heavy-metal ions and may mediate responses to Zn2+ released into the portal circulation with insulin.
Full Text
The Full Text of this article is available as a PDF (167.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aida K., Koishi S., Tawata M., Onaya T. Molecular cloning of a putative Ca(2+)-sensing receptor cDNA from human kidney. Biochem Biophys Res Commun. 1995 Sep 14;214(2):524–529. doi: 10.1006/bbrc.1995.2318. [DOI] [PubMed] [Google Scholar]
- Arslan P., Di Virgilio F., Beltrame M., Tsien R. Y., Pozzan T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J Biol Chem. 1985 Mar 10;260(5):2719–2727. [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Beuers U., Nathanson M. H., Isales C. M., Boyer J. L. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest. 1993 Dec;92(6):2984–2993. doi: 10.1172/JCI116921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand I. A., Kleineke J. Intracellular zinc movement and its effect on the carbohydrate metabolism of isolated rat hepatocytes. J Biol Chem. 1996 Jan 26;271(4):1941–1949. doi: 10.1074/jbc.271.4.1941. [DOI] [PubMed] [Google Scholar]
- Brown E. M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., Sun A., Hediger M. A., Lytton J., Hebert S. C. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993 Dec 9;366(6455):575–580. doi: 10.1038/366575a0. [DOI] [PubMed] [Google Scholar]
- Brown E. M., Vassilev P. M., Hebert S. C. Calcium ions as extracellular messengers. Cell. 1995 Dec 1;83(5):679–682. doi: 10.1016/0092-8674(95)90180-9. [DOI] [PubMed] [Google Scholar]
- Byron K. L., Taylor C. W. Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores. J Biol Chem. 1993 Apr 5;268(10):6945–6952. [PubMed] [Google Scholar]
- Conklin B. R., Bourne H. R. Homeostatic signals. Marriage of the flytrap and the serpent. Nature. 1994 Jan 6;367(6458):22–22. doi: 10.1038/367022a0. [DOI] [PubMed] [Google Scholar]
- Crofts J. N., Barritt G. J. The liver cell plasma membrane Ca2+ inflow systems exhibit a broad specificity for divalent metal ions. Biochem J. 1990 Aug 1;269(3):579–587. doi: 10.1042/bj2690579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duddy S. K., Kass G. E., Orrenius S. Ca2(+)-mobilizing hormones stimulate Ca2+ efflux from hepatocytes. J Biol Chem. 1989 Dec 15;264(35):20863–20866. [PubMed] [Google Scholar]
- Dwyer S. D., Zhuang Y., Smith J. B. Calcium mobilization by cadmium or decreasing extracellular Na+ or pH in coronary endothelial cells. Exp Cell Res. 1991 Jan;192(1):22–31. doi: 10.1016/0014-4827(91)90152-k. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hebert S. C., Brown E. M. The extracellular calcium receptor. Curr Opin Cell Biol. 1995 Aug;7(4):484–492. doi: 10.1016/0955-0674(95)80004-2. [DOI] [PubMed] [Google Scholar]
- Hughes B. P., Barritt G. J. Inhibition of the liver cell receptor-activated Ca2+ inflow system by metal ion inhibitors of voltage-operated Ca2+ channels but not by other inhibitors of Ca2+ inflow. Biochim Biophys Acta. 1989 Oct 9;1013(3):197–205. doi: 10.1016/0167-4889(89)90135-3. [DOI] [PubMed] [Google Scholar]
- Juhlin C., Lundgren S., Johansson H., Lorentzen J., Rask L., Larsson E., Rastad J., Akerström G., Klareskog L. 500-Kilodalton calcium sensor regulating cytoplasmic Ca2+ in cytotrophoblast cells of human placenta. J Biol Chem. 1990 May 15;265(14):8275–8279. [PubMed] [Google Scholar]
- Karjalainen A., Bygrave F. L. Nickel: an agent for investigating the relation between hormone-induced Ca2+ influx and bile flow in the perfused rat liver. Cell Calcium. 1995 Sep;18(3):214–222. doi: 10.1016/0143-4160(95)90066-7. [DOI] [PubMed] [Google Scholar]
- Kass G. E., Chow S. C., Gahm A., Webb D. L., Berggren P. O., Llopis J., Orrenius S. Two separate plasma membrane Ca2+ carriers participate in receptor-mediated Ca2+ influx in rat hepatocytes. Biochim Biophys Acta. 1994 Sep 8;1223(2):226–233. doi: 10.1016/0167-4889(94)90230-5. [DOI] [PubMed] [Google Scholar]
- Magneson G. R., Puvathingal J. M., Ray W. J., Jr The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. J Biol Chem. 1987 Aug 15;262(23):11140–11148. [PubMed] [Google Scholar]
- Miledi R., Parker I., Woodward R. M. Membrane currents elicited by divalent cations in Xenopus oocytes. J Physiol. 1989 Oct;417:173–195. doi: 10.1113/jphysiol.1989.sp017796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemeth E. F., Scarpa A. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J Biol Chem. 1987 Apr 15;262(11):5188–5196. [PubMed] [Google Scholar]
- Palade P., Dettbarn C., Brunder D., Stein P., Hals G. Pharmacology of calcium release from sarcoplasmic reticulum. J Bioenerg Biomembr. 1989 Apr;21(2):295–320. doi: 10.1007/BF00812074. [DOI] [PubMed] [Google Scholar]
- Riccardi D., Park J., Lee W. S., Gamba G., Brown E. M., Hebert S. C. Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):131–135. doi: 10.1073/pnas.92.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rooney T. A., Sass E. J., Thomas A. P. Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. J Biol Chem. 1989 Oct 15;264(29):17131–17141. [PubMed] [Google Scholar]
- Ruat M., Molliver M. E., Snowman A. M., Snyder S. H. Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3161–3165. doi: 10.1073/pnas.92.8.3161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shankar V. S., Alam A. S., Bax C. M., Bax B. E., Pazianas M., Huang C. L., Zaidi M. Activation and inactivation of the osteoclast Ca2+ receptor by the trivalent cation, La3+. Biochem Biophys Res Commun. 1992 Sep 16;187(2):907–912. doi: 10.1016/0006-291x(92)91283-v. [DOI] [PubMed] [Google Scholar]
- Shankar V. S., Bax C. M., Alam A. S., Bax B. E., Huang C. L., Zaidi M. The osteoclast Ca2+ receptor is highly sensitive to activation by transition metal cations. Biochem Biophys Res Commun. 1992 Sep 16;187(2):913–918. doi: 10.1016/0006-291x(92)91284-w. [DOI] [PubMed] [Google Scholar]
- Shankar V. S., Bax C. M., Bax B. E., Alam A. S., Moonga B. S., Simon B., Pazianas M., Huang C. L., Zaidi M. Activation of the Ca2+ "receptor" on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation. J Cell Physiol. 1993 Apr;155(1):120–129. doi: 10.1002/jcp.1041550116. [DOI] [PubMed] [Google Scholar]
- Slomianka L. Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience. 1992;48(2):325–352. doi: 10.1016/0306-4522(92)90494-m. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Dwyer S. D., Smith L. Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem. 1989 May 5;264(13):7115–7118. [PubMed] [Google Scholar]
- Smith J. B., Dwyer S. D., Smith L. Lowering extracellular pH evokes inositol polyphosphate formation and calcium mobilization. J Biol Chem. 1989 May 25;264(15):8723–8728. [PubMed] [Google Scholar]
- Storey D. J., Shears S. B., Kirk C. J., Michell R. H. Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature. 1984 Nov 22;312(5992):374–376. doi: 10.1038/312374a0. [DOI] [PubMed] [Google Scholar]
- Taylor C. W., Berridge M. J., Cooke A. M., Potter B. V. Inositol 1,4,5-trisphosphorothioate, a stable analogue of inositol trisphosphate which mobilizes intracellular calcium. Biochem J. 1989 May 1;259(3):645–650. doi: 10.1042/bj2590645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi M. Regulatory effects of zinc and copper on the calcium transport system in rat liver nuclei. Relation to SH groups in the releasing mechanism. Biochem Pharmacol. 1993 Feb 24;45(4):943–948. doi: 10.1016/0006-2952(93)90180-5. [DOI] [PubMed] [Google Scholar]
- Zhang G. H., Yamaguchi M., Kimura S., Higham S., Kraus-Friedmann N. Effects of heavy metal on rat liver microsomal Ca2(+)-ATPase and Ca2+ sequestering. Relation to SH groups. J Biol Chem. 1990 Feb 5;265(4):2184–2189. [PubMed] [Google Scholar]