Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 May 1;339(Pt 3):667–673.

Molecular cloning and expression of adenosine kinase from Leishmania donovani: identification of unconventional P-loop motif.

K M Sinha 1, M Ghosh 1, I Das 1, A K Datta 1
PMCID: PMC1220203  PMID: 10215606

Abstract

The unique catalytic characteristics of adenosine kinase (Adk) and its stage-specific differential activity pattern have made this enzyme a prospective target for chemotherapeutic manipulation in the purine-auxotrophic parasitic protozoan Leishmania donovani. However, nothing is known about the structure of the parasite Adk. We report here the cloning of its gene and the characterization of the gene product. The encoded protein, consisting of 345 amino acid residues with a calculated molecular mass of 37173 Da, shares limited but significant similarity with sugar kinases and inosine-guanosine kinase of microbial origin, supporting the notion that these enzymes might have the same ancestral origin. The identity of the parasite enzyme with the corresponding enzyme from two other sources so far described was only 40%. Furthermore, 5' RNA mapping studies indicated that the Adk gene transcript is matured post-transcriptionally with the trans-splicing of the mini-exon (spliced leader) occurring at nt -160 from the predicted translation initiation site. The biochemical properties of the recombinant enzyme were similar to those of the enzyme isolated from leishmanial cells. The intrinsic tryptophan fluorescence of the enzyme was substrate-sensitive. On the basis of a multiple protein-alignment sequence comparison and ATP-induced fluorescence quenching in the presence or the absence of KI and acrylamide, the docking site for ATP has been provisionally identified and shown to have marked divergence from the consensus P-loop motif reported for ATP- or GTP-binding proteins from other sources.

Full Text

The Full Text of this article is available as a PDF (206.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Andres C. M., Fox I. H. Purification and properties of human placental adenosine kinase. J Biol Chem. 1979 Nov 25;254(22):11388–11393. [PubMed] [Google Scholar]
  3. Bagui T. K., Ghosh M., Datta A. K. Two conformationally vicinal thiols at the active site of Leishmania donovani adenosine kinase. Biochem J. 1996 Jun 1;316(Pt 2):439–445. doi: 10.1042/bj3160439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beverley S. M., Ellenberger T. E., Cordingley J. S. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2584–2588. doi: 10.1073/pnas.83.8.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhaumik D., Datta A. K. Active site thiol(s) in Leishmania donovani adenosine kinase: comparison with hamster enzyme and evidence for the absence of regulatory adenosine binding site. Mol Biochem Parasitol. 1992 May;52(1):29–38. doi: 10.1016/0166-6851(92)90033-g. [DOI] [PubMed] [Google Scholar]
  6. Bhaumik D., Datta A. K. Immunochemical and catalytic characteristics of adenosine kinase from Leishmania donovani. J Biol Chem. 1989 Mar 15;264(8):4356–4361. [PubMed] [Google Scholar]
  7. Bhaumik D., Datta A. K. Reaction kinetics and inhibition of adenosine kinase from Leishmania donovani. Mol Biochem Parasitol. 1988 Apr;28(3):181–187. doi: 10.1016/0166-6851(88)90002-3. [DOI] [PubMed] [Google Scholar]
  8. Bontemps F., Mimouni M., Van den Berghe G. Phosphorylation of adenosine in anoxic hepatocytes by an exchange reaction catalysed by adenosine kinase. Biochem J. 1993 Mar 15;290(Pt 3):679–684. doi: 10.1042/bj2900679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bujalowski W., Klonowska M. M. Close proximity of tryptophan residues and ATP-binding site in Escherichia coli primary replicative helicase DnaB protein. Molecular topography of the enzyme. J Biol Chem. 1994 Dec 16;269(50):31359–31371. [PubMed] [Google Scholar]
  10. Chang C. H., Brockman R. W., Bennett L. L., Jr Adenosine kinase from L1210 cells. Purification and some properties of the enzyme. J Biol Chem. 1980 Mar 25;255(6):2366–2371. [PubMed] [Google Scholar]
  11. Datta A. K., Bhaumik D., Chatterjee R. Isolation and characterization of adenosine kinase from Leishmania donovani. J Biol Chem. 1987 Apr 25;262(12):5515–5521. [PubMed] [Google Scholar]
  12. Deyrup A. T., Krishnan S., Cockburn B. N., Schwartz N. B. Deletion and site-directed mutagenesis of the ATP-binding motif (P-loop) in the bifunctional murine ATP-sulfurylase/adenosine 5'-phosphosulfate kinase enzyme. J Biol Chem. 1998 Apr 17;273(16):9450–9456. doi: 10.1074/jbc.273.16.9450. [DOI] [PubMed] [Google Scholar]
  13. Divita G., Di Pietro A., Deléage G., Roux B., Gautheron D. C. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions. Biochemistry. 1991 Apr 2;30(13):3256–3262. doi: 10.1021/bi00227a013. [DOI] [PubMed] [Google Scholar]
  14. Driscoll W. J., Komatsu K., Strott C. A. Proposed active site domain in estrogen sulfotransferase as determined by mutational analysis. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12328–12332. doi: 10.1073/pnas.92.26.12328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  16. Ghosh M., Datta A. K. Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase. Biochem J. 1994 Mar 1;298(Pt 2):295–301. doi: 10.1042/bj2980295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hanson S., Adelman J., Ullman B. Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani. J Biol Chem. 1992 Feb 5;267(4):2350–2359. [PubMed] [Google Scholar]
  18. Hao W., Gupta R. S. Pentavalent ions dependency of mammalian adenosine kinase. Biochem Mol Biol Int. 1996 Apr;38(5):889–899. [PubMed] [Google Scholar]
  19. Hope J. N., Bell A. W., Hermodson M. A., Groarke J. M. Ribokinase from Escherichia coli K12. Nucleotide sequence and overexpression of the rbsK gene and purification of ribokinase. J Biol Chem. 1986 Jun 15;261(17):7663–7668. [PubMed] [Google Scholar]
  20. Hwang H. Y., Ullman B. Genetic analysis of purine metabolism in Leishmania donovani. J Biol Chem. 1997 Aug 1;272(31):19488–19496. doi: 10.1074/jbc.272.31.19488. [DOI] [PubMed] [Google Scholar]
  21. Ivens A. C., Blackwell J. M. Unravelling the Leishmania genome. Curr Opin Genet Dev. 1996 Dec;6(6):704–710. doi: 10.1016/s0959-437x(96)80024-4. [DOI] [PubMed] [Google Scholar]
  22. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  23. Logan K. M., Knight K. L. Mutagenesis of the P-loop motif in the ATP binding site of the RecA protein from Escherichia coli. J Mol Biol. 1993 Aug 20;232(4):1048–1059. doi: 10.1006/jmbi.1993.1459. [DOI] [PubMed] [Google Scholar]
  24. Looker D. L., Berens R. L., Marr J. J. Purine metabolism in Leishmania donovani amastigotes and promastigotes. Mol Biochem Parasitol. 1983 Sep;9(1):15–28. doi: 10.1016/0166-6851(83)90053-1. [DOI] [PubMed] [Google Scholar]
  25. Luisi P. L., Olomucki A., Baici A., Karlovic D. Fluorescence properties of octopine dehydrogenase. Biochemistry. 1973 Oct 9;12(21):4100–4106. doi: 10.1021/bi00745a012. [DOI] [PubMed] [Google Scholar]
  26. McNally T., Helfrich R. J., Cowart M., Dorwin S. A., Meuth J. L., Idler K. B., Klute K. A., Simmer R. L., Kowaluk E. A., Halbert D. N. Cloning and expression of the adenosine kinase gene from rat and human tissues. Biochem Biophys Res Commun. 1997 Feb 24;231(3):645–650. doi: 10.1006/bbrc.1997.6157. [DOI] [PubMed] [Google Scholar]
  27. Meade J. C., Shaw J., Lemaster S., Gallagher G., Stringer J. R. Structure and expression of a tandem gene pair in Leishmania donovani that encodes a protein structurally homologous to eucaryotic cation-transporting ATPases. Mol Cell Biol. 1987 Nov;7(11):3937–3946. doi: 10.1128/mcb.7.11.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Messmer C. H., Kägi J. H. Tryptophan residues of creatine kinase: a fluorescence study. Biochemistry. 1985 Dec 3;24(25):7172–7178. doi: 10.1021/bi00346a023. [DOI] [PubMed] [Google Scholar]
  29. Miller R. L., Adamczyk D. L., Miller W. H., Koszalka G. W., Rideout J. L., Beacham L. M., 3rd, Chao E. Y., Haggerty J. J., Krenitsky T. A., Elion G. B. Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity. J Biol Chem. 1979 Apr 10;254(7):2346–2352. [PubMed] [Google Scholar]
  30. Mimouni M., Bontemps F., Van den Berghe G. Kinetic studies of rat liver adenosine kinase. Explanation of exchange reaction between adenosine and AMP. J Biol Chem. 1994 Jul 8;269(27):17820–17825. [PubMed] [Google Scholar]
  31. Miyamoto K., Nakahigashi K., Nishimura K., Inokuchi H. Isolation and characterization of visible light-sensitive mutants of Escherichia coli K12. J Mol Biol. 1991 Jun 5;219(3):393–398. doi: 10.1016/0022-2836(91)90180-e. [DOI] [PubMed] [Google Scholar]
  32. Murphy W. J., Watkins K. P., Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell. 1986 Nov 21;47(4):517–525. doi: 10.1016/0092-8674(86)90616-1. [DOI] [PubMed] [Google Scholar]
  33. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  34. Rozen F., Pelletier J., Trachsel H., Sonenberg N. A lysine substitution in the ATP-binding site of eucaryotic initiation factor 4A abrogates nucleotide-binding activity. Mol Cell Biol. 1989 Sep;9(9):4061–4063. doi: 10.1128/mcb.9.9.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  36. Satishchandran C., Hickman Y. N., Markham G. D. Characterization of the phosphorylated enzyme intermediate formed in the adenosine 5'-phosphosulfate kinase reaction. Biochemistry. 1992 Dec 1;31(47):11684–11688. doi: 10.1021/bi00162a003. [DOI] [PubMed] [Google Scholar]
  37. Sayós J., Solsona C., Mallol J., Lluis C., Franco R. Phosphorylation of adenosine in renal brush-border membrane vesicles by an exchange reaction catalysed by adenosine kinase. Biochem J. 1994 Feb 1;297(Pt 3):491–496. doi: 10.1042/bj2970491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Singh B., Hao W., Wu Z., Eigl B., Gupta R. S. Cloning and characterization of cDNA for adenosine kinase from mammalian (Chinese hamster, mouse, human and rat) species. High frequency mutants of Chinese hamster ovary cells involve structural alterations in the gene. Eur J Biochem. 1996 Oct 15;241(2):564–571. doi: 10.1111/j.1432-1033.1996.00564.x. [DOI] [PubMed] [Google Scholar]
  39. Spector T., Jones T. E., Elion G. B. Specificity of adenylosuccinate synthetase and adenylosuccinate lyase from Leishmania donovani. Selective amination of an antiprotozoal agent. J Biol Chem. 1979 Sep 10;254(17):8422–8426. [PubMed] [Google Scholar]
  40. Spychala J., Datta N. S., Takabayashi K., Datta M., Fox I. H., Gribbin T., Mitchell B. S. Cloning of human adenosine kinase cDNA: sequence similarity to microbial ribokinases and fructokinases. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1232–1237. doi: 10.1073/pnas.93.3.1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sutton R. E., Boothroyd J. C. Evidence for trans splicing in trypanosomes. Cell. 1986 Nov 21;47(4):527–535. doi: 10.1016/0092-8674(86)90617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thierry A., Fairhead C., Dujon B. The complete sequence of the 8.2 kb segment left of MAT on chromosome III reveals five ORFs, including a gene for a yeast ribokinase. Yeast. 1990 Nov-Dec;6(6):521–534. doi: 10.1002/yea.320060609. [DOI] [PubMed] [Google Scholar]
  43. Thomas P. M., Wohllk N., Huang E., Kuhnle U., Rabl W., Gagel R. F., Cote G. J. Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet. 1996 Sep;59(3):510–518. [PMC free article] [PubMed] [Google Scholar]
  44. Traut T. W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem. 1994 May 15;222(1):9–19. doi: 10.1111/j.1432-1033.1994.tb18835.x. [DOI] [PubMed] [Google Scholar]
  45. Tuttle J. V., Krenitsky T. A. Purine phosphoribosyltransferases from Leishmania donovani. J Biol Chem. 1980 Feb 10;255(3):909–916. [PubMed] [Google Scholar]
  46. Van der Ploeg L. H. Discontinuous transcription and splicing in trypanosomes. Cell. 1986 Nov 21;47(4):479–480. doi: 10.1016/0092-8674(86)90608-2. [DOI] [PubMed] [Google Scholar]
  47. Weinmaster G., Zoller M. J., Pawson T. A lysine in the ATP-binding site of P130gag-fps is essential for protein-tyrosine kinase activity. EMBO J. 1986 Jan;5(1):69–76. doi: 10.1002/j.1460-2075.1986.tb04179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamada Y., Goto H., Ogasawara N. Differences of adenosine kinases from various mammalian tissues. Comp Biochem Physiol B. 1982;71(3):367–372. doi: 10.1016/0305-0491(82)90396-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES