Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jun 15;340(Pt 3):677–686.

Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters.

R Jasinska 1, Q X Zhang 1, C Pilquil 1, I Singh 1, J Xu 1, J Dewald 1, D A Dillon 1, L G Berthiaume 1, G M Carman 1, D W Waggoner 1, D N Brindley 1
PMCID: PMC1220298  PMID: 10359651

Abstract

Lipid phosphate phosphohydrolase (LPP)-1 cDNA was cloned from a rat liver cDNA library. It codes for a 32-kDa protein that shares 87 and 82% amino acid sequence identities with putative products of murine and human LPP-1 cDNAs, respectively. Membrane fractions of rat2 fibroblasts that stably expressed mouse or rat LPP-1 exhibited 3.1-3. 6-fold higher specific activities for phosphatidate dephosphorylation compared with vector controls. Increases in the dephosphorylation of lysophosphatidate, ceramide 1-phosphate, sphingosine 1-phosphate and diacylglycerol pyrophosphate were similar to those for phosphatidate. Rat2 fibroblasts expressing mouse LPP-1 cDNA showed 1.6-2.3-fold increases in the hydrolysis of exogenous lysophosphatidate, phosphatidate and ceramide 1-phosphate compared with vector control cells. Recombinant LPP-1 was located partially in plasma membranes with its C-terminus on the cytosolic surface. Lysophosphatidate dephosphorylation was inhibited by extracellular Ca2+ and this inhibition was diminished by extracellular Mg2+. Changing intracellular Ca2+ concentrations did not alter exogenous lysophosphatidate dephosphorylation significantly. Permeabilized fibroblasts showed relatively little latency for the dephosphorylation of exogenous lysophosphatidate. LPP-1 expression decreased the activation of mitogen-activated protein kinase and DNA synthesis by exogenous lysophosphatidate. The product of LPP-1 cDNA is concluded to act partly to degrade exogenous lysophosphatidate and thereby regulate its effects on cell signalling.

Full Text

The Full Text of this article is available as a PDF (221.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abousalham A., Liossis C., O'Brien L., Brindley D. N. Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. J Biol Chem. 1997 Jan 10;272(2):1069–1075. doi: 10.1074/jbc.272.2.1069. [DOI] [PubMed] [Google Scholar]
  2. An S., Bleu T., Hallmark O. G., Goetzl E. J. Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J Biol Chem. 1998 Apr 3;273(14):7906–7910. doi: 10.1074/jbc.273.14.7906. [DOI] [PubMed] [Google Scholar]
  3. Barilà D., Plateroti M., Nobili F., Muda A. O., Xie Y., Morimoto T., Perozzi G. The Dri 42 gene, whose expression is up-regulated during epithelial differentiation, encodes a novel endoplasmic reticulum resident transmembrane protein. J Biol Chem. 1996 Nov 22;271(47):29928–29936. doi: 10.1074/jbc.271.47.29928. [DOI] [PubMed] [Google Scholar]
  4. Brindley D. N., Waggoner D. W. Mammalian lipid phosphate phosphohydrolases. J Biol Chem. 1998 Sep 18;273(38):24281–24284. doi: 10.1074/jbc.273.38.24281. [DOI] [PubMed] [Google Scholar]
  5. Brindley D. N., Waggoner D. W. Phosphatidate phosphohydrolase and signal transduction. Chem Phys Lipids. 1996 May 24;80(1-2):45–57. doi: 10.1016/0009-3084(96)02545-5. [DOI] [PubMed] [Google Scholar]
  6. Cross M. J., Roberts S., Ridley A. J., Hodgkin M. N., Stewart A., Claesson-Welsh L., Wakelam M. J. Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr Biol. 1996 May 1;6(5):588–597. doi: 10.1016/s0960-9822(02)00545-6. [DOI] [PubMed] [Google Scholar]
  7. Dillon D. A., Chen X., Zeimetz G. M., Wu W. I., Waggoner D. W., Dewald J., Brindley D. N., Carman G. M. Mammalian Mg2+-independent phosphatidate phosphatase (PAP2) displays diacylglycerol pyrophosphate phosphatase activity. J Biol Chem. 1997 Apr 18;272(16):10361–10366. doi: 10.1074/jbc.272.16.10361. [DOI] [PubMed] [Google Scholar]
  8. Eastman S. J., Hope M. J., Cullis P. R. Transbilayer transport of phosphatidic acid in response to transmembrane pH gradients. Biochemistry. 1991 Feb 19;30(7):1740–1745. doi: 10.1021/bi00221a002. [DOI] [PubMed] [Google Scholar]
  9. English D., Martin M., Harvey K. A., Akard L. P., Allen R., Widlanski T. S., Garcia J. G., Siddiqui R. A. Characterization and purification of neutrophil ecto-phosphatidic acid phosphohydrolase. Biochem J. 1997 Jun 15;324(Pt 3):941–950. doi: 10.1042/bj3240941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fukushima N., Kimura Y., Chun J. A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6151–6156. doi: 10.1073/pnas.95.11.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gomez-Muñoz A., Frago L. M., Alvarez L., Varela-Nieto I. Stimulation of DNA synthesis by natural ceramide 1-phosphate. Biochem J. 1997 Jul 15;325(Pt 2):435–440. doi: 10.1042/bj3250435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gomez-Muñoz A., Martin A., O'Brien L., Brindley D. N. Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J Biol Chem. 1994 Mar 25;269(12):8937–8943. [PubMed] [Google Scholar]
  13. Guo Z., Liliom K., Fischer D. J., Bathurst I. C., Tomei L. D., Kiefer M. C., Tigyi G. Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14367–14372. doi: 10.1073/pnas.93.25.14367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gómez-Muñoz A., Waggoner D. W., O'Brien L., Brindley D. N. Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. J Biol Chem. 1995 Nov 3;270(44):26318–26325. doi: 10.1074/jbc.270.44.26318. [DOI] [PubMed] [Google Scholar]
  15. Ha K. S., Exton J. H. Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J Cell Biol. 1993 Dec;123(6 Pt 2):1789–1796. doi: 10.1083/jcb.123.6.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hemrika W., Renirie R., Dekker H. L., Barnett P., Wever R. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2145–2149. doi: 10.1073/pnas.94.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  18. Homan R., Pownall H. J. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length. Biochim Biophys Acta. 1988 Feb 18;938(2):155–166. doi: 10.1016/0005-2736(88)90155-1. [DOI] [PubMed] [Google Scholar]
  19. Hooks S. B., Ragan S. P., Lynch K. R. Identification of a novel human phosphatidic acid phosphatase type 2 isoform. FEBS Lett. 1998 May 8;427(2):188–192. doi: 10.1016/s0014-5793(98)00421-9. [DOI] [PubMed] [Google Scholar]
  20. Jalink K., Hengeveld T., Mulder S., Postma F. R., Simon M. F., Chap H., van der Marel G. A., van Boom J. H., van Blitterswijk W. J., Moolenaar W. H. Lysophosphatidic acid-induced Ca2+ mobilization in human A431 cells: structure-activity analysis. Biochem J. 1995 Apr 15;307(Pt 2):609–616. doi: 10.1042/bj3070609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jalink K., van Corven E. J., Moolenaar W. H. Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2(+)-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J Biol Chem. 1990 Jul 25;265(21):12232–12239. [PubMed] [Google Scholar]
  22. Jamal Z., Martin A., Gomez-Muñoz A., Brindley D. N. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem. 1991 Feb 15;266(5):2988–2996. [PubMed] [Google Scholar]
  23. Kai M., Wada I., Imai S. i., Sakane F., Kanoh H. Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem. 1997 Sep 26;272(39):24572–24578. doi: 10.1074/jbc.272.39.24572. [DOI] [PubMed] [Google Scholar]
  24. Kai M., Wada I., Imai S., Sakane F., Kanoh H. Identification and cDNA cloning of 35-kDa phosphatidic acid phosphatase (type 2) bound to plasma membranes. Polymerase chain reaction amplification of mouse H2O2-inducible hic53 clone yielded the cDNA encoding phosphatidic acid phosphatase. J Biol Chem. 1996 Aug 2;271(31):18931–18938. doi: 10.1074/jbc.271.31.18931. [DOI] [PubMed] [Google Scholar]
  25. Kanoh H., Kai M., Wada I. Phosphatidic acid phosphatase from mammalian tissues: discovery of channel-like proteins with unexpected functions. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):56–62. doi: 10.1016/s0005-2760(97)00094-5. [DOI] [PubMed] [Google Scholar]
  26. Kelly S. J., Dardinger D. E., Butler L. G. Hydrolysis of phosphonate esters catalyzed by 5'-nucleotide phosphodiesterase. Biochemistry. 1975 Nov 4;14(22):4983–4988. doi: 10.1021/bi00693a030. [DOI] [PubMed] [Google Scholar]
  27. Ktistakis N. T., Brown H. A., Sternweis P. C., Roth M. G. Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4952–4956. doi: 10.1073/pnas.92.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ktistakis N. T., Brown H. A., Waters M. G., Sternweis P. C., Roth M. G. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol. 1996 Jul;134(2):295–306. doi: 10.1083/jcb.134.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  30. Leung D. W., Tompkins C. K., White T. Molecular cloning of two alternatively spliced forms of human phosphatidic acid phosphatase cDNAs that are differentially expressed in normal and tumor cells. DNA Cell Biol. 1998 Apr;17(4):377–385. doi: 10.1089/dna.1998.17.377. [DOI] [PubMed] [Google Scholar]
  31. Martin A., Duffy P. A., Liossis C., Gomez-Muñoz A., O'Brien L., Stone J. C., Brindley D. N. Increased concentrations of phosphatidate, diacylglycerol and ceramide in ras- and tyrosine kinase (fps)-transformed fibroblasts. Oncogene. 1997 Apr 3;14(13):1571–1580. doi: 10.1038/sj.onc.1200987. [DOI] [PubMed] [Google Scholar]
  32. Martin A., Gomez-Muñoz A., Waggoner D. W., Stone J. C., Brindley D. N. Decreased activities of phosphatidate phosphohydrolase and phospholipase D in ras and tyrosine kinase (fps) transformed fibroblasts. J Biol Chem. 1993 Nov 15;268(32):23924–23932. [PubMed] [Google Scholar]
  33. Moolenaar W. H. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995 Jun 2;270(22):12949–12952. doi: 10.1074/jbc.270.22.12949. [DOI] [PubMed] [Google Scholar]
  34. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Neuwald A. F. An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci. 1997 Aug;6(8):1764–1767. doi: 10.1002/pro.5560060817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pagano R. E., Longmuir K. J. Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts. J Biol Chem. 1985 Feb 10;260(3):1909–1916. [PubMed] [Google Scholar]
  37. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perry D. K., Stevens V. L., Widlanski T. S., Lambeth J. D. A novel ecto-phosphatidic acid phosphohydrolase activity mediates activation of neutrophil superoxide generation by exogenous phosphatidic acid. J Biol Chem. 1993 Dec 5;268(34):25302–25310. [PubMed] [Google Scholar]
  39. Pyne S., Tolan D. G., Conway A. M., Pyne N. Sphingolipids as differential regulators of cellular signalling processes. Biochem Soc Trans. 1997 May;25(2):549–556. doi: 10.1042/bst0250549. [DOI] [PubMed] [Google Scholar]
  40. Reusch R. N. A mechanism for phosphoglyceride and Ca2+ transbilayer movement. Chem Phys Lipids. 1985 Apr;37(1):53–67. doi: 10.1016/0009-3084(85)90074-x. [DOI] [PubMed] [Google Scholar]
  41. Roberts R., Sciorra V. A., Morris A. J. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Chem. 1998 Aug 21;273(34):22059–22067. doi: 10.1074/jbc.273.34.22059. [DOI] [PubMed] [Google Scholar]
  42. Shephard E. H., Hübscher G. Phosphatidate biosynthesis in mitochondrial subfractions of rat liver. Biochem J. 1969 Jun;113(2):429–440. doi: 10.1042/bj1130429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stukey J., Carman G. M. Identification of a novel phosphatase sequence motif. Protein Sci. 1997 Feb;6(2):469–472. doi: 10.1002/pro.5560060226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tokumura A., Tsutsumi T., Tsukatani H. Transbilayer movement and metabolic fate of ether-linked phosphatidic acid (1-O-Octadecyl-2-acetyl-sn-glycerol 3-phosphate) in guinea pig peritoneal polymorphonuclear leukocytes. J Biol Chem. 1992 Apr 15;267(11):7275–7283. [PubMed] [Google Scholar]
  45. Waggoner D. W., Gómez-Muñoz A., Dewald J., Brindley D. N. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. J Biol Chem. 1996 Jul 12;271(28):16506–16509. doi: 10.1074/jbc.271.28.16506. [DOI] [PubMed] [Google Scholar]
  46. Waggoner D. W., Martin A., Dewald J., Gómez-Muñoz A., Brindley D. N. Purification and characterization of novel plasma membrane phosphatidate phosphohydrolase from rat liver. J Biol Chem. 1995 Aug 18;270(33):19422–19429. doi: 10.1074/jbc.270.33.19422. [DOI] [PubMed] [Google Scholar]
  47. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wu W. I., Liu Y., Riedel B., Wissing J. B., Fischl A. S., Carman G. M. Purification and characterization of diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae. J Biol Chem. 1996 Jan 26;271(4):1868–1876. doi: 10.1074/jbc.271.4.1868. [DOI] [PubMed] [Google Scholar]
  49. Xie M., Low M. G. Identification and characterization of an ecto-(lyso)phosphatidic acid phosphatase in PAM212 keratinocytes. Arch Biochem Biophys. 1994 Jul;312(1):254–259. doi: 10.1006/abbi.1994.1307. [DOI] [PubMed] [Google Scholar]
  50. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhou Q., Sims P. J., Wiedmer T. Identity of a conserved motif in phospholipid scramblase that is required for Ca2+-accelerated transbilayer movement of membrane phospholipids. Biochemistry. 1998 Feb 24;37(8):2356–2360. doi: 10.1021/bi972625o. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES