Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Jul 15;341(Pt 2):233–249.

The mitochondrial permeability transition pore and its role in cell death.

M Crompton 1
PMCID: PMC1220352  PMID: 10393078

Abstract

This article reviews the involvement of the mitochondrial permeability transition pore in necrotic and apoptotic cell death. The pore is formed from a complex of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocase and cyclophilin-D (CyP-D) at contact sites between the mitochondrial outer and inner membranes. In vitro, under pseudopathological conditions of oxidative stress, relatively high Ca2+ and low ATP, the complex flickers into an open-pore state allowing free diffusion of low-Mr solutes across the inner membrane. These conditions correspond to those that unfold during tissue ischaemia and reperfusion, suggesting that pore opening may be an important factor in the pathogenesis of necrotic cell death following ischaemia/reperfusion. Evidence that the pore does open during ischaemia/reperfusion is discussed. There are also strong indications that the VDAC-adenine nucleotide translocase-CyP-D complex can recruit a number of other proteins, including Bax, and that the complex is utilized in some capacity during apoptosis. The apoptotic pathway is amplified by the release of apoptogenic proteins from the mitochondrial intermembrane space, including cytochrome c, apoptosis-inducing factor and some procaspases. Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke 'accidental' apoptosis.

Full Text

The Full Text of this article is available as a PDF (209.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J., Kinney T., Thompson S., Rubin L., Helling R. B. Frequency-Dependent Selection for Plasmid-Containing Cells of ESCHERICHIA COLI. Genetics. 1979 Apr;91(4):627–637. doi: 10.1093/genetics/91.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Al-Nasser I., Crompton M. The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing. Na+-dependent and -independent effluxes of Ca2+ in arsenazo III-loaded mitochondria. Biochem J. 1986 Oct 1;239(1):31–40. doi: 10.1042/bj2390031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Al-Nasser I., Crompton M. The reversible Ca2+-induced permeabilization of rat liver mitochondria. Biochem J. 1986 Oct 1;239(1):19–29. doi: 10.1042/bj2390019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alberg D. G., Schreiber S. L. Structure-based design of a cyclophilin-calcineurin bridging ligand. Science. 1993 Oct 8;262(5131):248–250. doi: 10.1126/science.8211144. [DOI] [PubMed] [Google Scholar]
  5. Allshire A., Piper H. M., Cuthbertson K. S., Cobbold P. H. Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J. 1987 Jun 1;244(2):381–385. doi: 10.1042/bj2440381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andreeva L., Crompton M. An ADP-sensitive cyclosporin-A-binding protein in rat liver mitochondria. Eur J Biochem. 1994 Apr 1;221(1):261–268. doi: 10.1111/j.1432-1033.1994.tb18737.x. [DOI] [PubMed] [Google Scholar]
  7. Andreeva L., Tanveer A., Crompton M. Evidence for the involvement of a membrane-associated cyclosporin-A-binding protein in the Ca(2+)-activated inner membrane pore of heart mitochondria. Eur J Biochem. 1995 Jun 15;230(3):1125–1132. doi: 10.1111/j.1432-1033.1995.tb20664.x. [DOI] [PubMed] [Google Scholar]
  8. Ankarcrona M., Dypbukt J. M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S. A., Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995 Oct;15(4):961–973. doi: 10.1016/0896-6273(95)90186-8. [DOI] [PubMed] [Google Scholar]
  9. Antonsson B., Conti F., Ciavatta A., Montessuit S., Lewis S., Martinou I., Bernasconi L., Bernard A., Mermod J. J., Mazzei G. Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997 Jul 18;277(5324):370–372. doi: 10.1126/science.277.5324.370. [DOI] [PubMed] [Google Scholar]
  10. Ardail D., Lerme F., Louisot P. Involvement of contact sites in phosphatidylserine import into liver mitochondria. J Biol Chem. 1991 May 5;266(13):7978–7981. [PubMed] [Google Scholar]
  11. Beetsch J. W., Park T. S., Dugan L. L., Shah A. R., Gidday J. M. Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells. Brain Res. 1998 Mar 9;786(1-2):89–95. doi: 10.1016/s0006-8993(97)01407-8. [DOI] [PubMed] [Google Scholar]
  12. Beilharz E. J., Williams C. E., Dragunow M., Sirimanne E. S., Gluckman P. D. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res. 1995 Mar;29(1):1–14. doi: 10.1016/0169-328x(94)00217-3. [DOI] [PubMed] [Google Scholar]
  13. Bernardi P., Broekemeier K. M., Pfeiffer D. R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994 Oct;26(5):509–517. doi: 10.1007/BF00762735. [DOI] [PubMed] [Google Scholar]
  14. Bernardi P., Vassanelli S., Veronese P., Colonna R., Szabó I., Zoratti M. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem. 1992 Feb 15;267(5):2934–2939. [PubMed] [Google Scholar]
  15. Bernardi P., Veronese P., Petronilli V. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem. 1993 Jan 15;268(2):1005–1010. [PubMed] [Google Scholar]
  16. Beutner G., Ruck A., Riede B., Welte W., Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 1996 Nov 4;396(2-3):189–195. doi: 10.1016/0014-5793(96)01092-7. [DOI] [PubMed] [Google Scholar]
  17. Beutner G., Rück A., Riede B., Brdiczka D. Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta. 1998 Jan 5;1368(1):7–18. doi: 10.1016/s0005-2736(97)00175-2. [DOI] [PubMed] [Google Scholar]
  18. Block M. R., Vignais P. V. Dependence of the conformational state of the isolated adenine nucleotide carrier protein on the detergent used for solubilization. Biochemistry. 1986 Jan 28;25(2):374–379. doi: 10.1021/bi00350a015. [DOI] [PubMed] [Google Scholar]
  19. Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7162–7166. doi: 10.1073/pnas.92.16.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bootman M., Niggli E., Berridge M., Lipp P. Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol. 1997 Mar 1;499(Pt 2):307–314. doi: 10.1113/jphysiol.1997.sp021928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bossy-Wetzel E., Newmeyer D. D., Green D. R. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 1998 Jan 2;17(1):37–49. doi: 10.1093/emboj/17.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Broderick R., Somlyo A. P. Calcium and magnesium transport by in situ mitochondria: electron probe analysis of vascular smooth muscle. Circ Res. 1987 Oct;61(4):523–530. doi: 10.1161/01.res.61.4.523. [DOI] [PubMed] [Google Scholar]
  23. Broekemeier K. M., Carpenter-Deyo L., Reed D. J., Pfeiffer D. R. Cyclosporin A protects hepatocytes subjected to high Ca2+ and oxidative stress. FEBS Lett. 1992 Jun 15;304(2-3):192–194. doi: 10.1016/0014-5793(92)80616-o. [DOI] [PubMed] [Google Scholar]
  24. Brustovetsky N., Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry. 1996 Jul 2;35(26):8483–8488. doi: 10.1021/bi960833v. [DOI] [PubMed] [Google Scholar]
  25. Charriaut-Marlangue C., Margaill I., Borrega F., Plotkine M., Ben-Ari Y. NG-nitro-L-arginine methyl ester reduces necrotic but not apoptotic cell death induced by reversible focal ischemia in rat. Eur J Pharmacol. 1996 Aug 29;310(2-3):137–140. doi: 10.1016/0014-2999(96)00385-8. [DOI] [PubMed] [Google Scholar]
  26. Chernyak B. V., Bernardi P. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. Eur J Biochem. 1996 Jun 15;238(3):623–630. doi: 10.1111/j.1432-1033.1996.0623w.x. [DOI] [PubMed] [Google Scholar]
  27. Choi D. W., Rothman S. M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–182. doi: 10.1146/annurev.ne.13.030190.001131. [DOI] [PubMed] [Google Scholar]
  28. Colombini M., Yeung C. L., Tung J., König T. The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim Biophys Acta. 1987 Dec 11;905(2):279–286. doi: 10.1016/0005-2736(87)90456-1. [DOI] [PubMed] [Google Scholar]
  29. Connern C. P., Halestrap A. P. Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J. 1992 Jun 1;284(Pt 2):381–385. doi: 10.1042/bj2840381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Crompton M., Andreeva L. On the interactions of Ca2+ and cyclosporin A with a mitochondrial inner membrane pore: a study using cobaltammine complex inhibitors of the Ca2+ uniporter. Biochem J. 1994 Aug 15;302(Pt 1):181–185. doi: 10.1042/bj3020181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Crompton M., Andreeva L. On the involvement of a mitochondrial pore in reperfusion injury. Basic Res Cardiol. 1993 Sep-Oct;88(5):513–523. doi: 10.1007/BF00795416. [DOI] [PubMed] [Google Scholar]
  32. Crompton M., Costi A. A heart mitochondrial Ca2(+)-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. Biochem J. 1990 Feb 15;266(1):33–39. doi: 10.1042/bj2660033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Crompton M., Costi A., Hayat L. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J. 1987 Aug 1;245(3):915–918. doi: 10.1042/bj2450915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Crompton M., Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem. 1988 Dec 15;178(2):489–501. doi: 10.1111/j.1432-1033.1988.tb14475.x. [DOI] [PubMed] [Google Scholar]
  35. Crompton M., Ellinger H., Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988 Oct 1;255(1):357–360. [PMC free article] [PubMed] [Google Scholar]
  36. Crompton M., Heid I., Baschera C., Carafoli E. The resolution of calcium fluxes in heart and liver mitochondria using the lanthanide series. FEBS Lett. 1979 Aug 15;104(2):352–354. doi: 10.1016/0014-5793(79)80850-9. [DOI] [PubMed] [Google Scholar]
  37. Crompton M., Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem. 1978 Nov 15;91(2):599–608. doi: 10.1111/j.1432-1033.1978.tb12713.x. [DOI] [PubMed] [Google Scholar]
  38. Crompton M., Künzi M., Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977 Oct 3;79(2):549–558. doi: 10.1111/j.1432-1033.1977.tb11839.x. [DOI] [PubMed] [Google Scholar]
  39. Crompton M., McGuinness O., Nazareth W. The involvement of cyclosporin A binding proteins in regulating and uncoupling mitochondrial energy transduction. Biochim Biophys Acta. 1992 Jul 17;1101(2):214–217. [PubMed] [Google Scholar]
  40. Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
  41. Crompton M., Virji S., Ward J. M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998 Dec 1;258(2):729–735. doi: 10.1046/j.1432-1327.1998.2580729.x. [DOI] [PubMed] [Google Scholar]
  42. Denton R. M., McCormack J. G. Ca2+ transport by mammalian mitochondria and its role in hormone action. Am J Physiol. 1985 Dec;249(6 Pt 1):E543–E554. doi: 10.1152/ajpendo.1985.249.6.E543. [DOI] [PubMed] [Google Scholar]
  43. Doerner A., Pauschinger M., Badorff A., Noutsias M., Giessen S., Schulze K., Bilger J., Rauch U., Schultheiss H. P. Tissue-specific transcription pattern of the adenine nucleotide translocase isoforms in humans. FEBS Lett. 1997 Sep 8;414(2):258–262. doi: 10.1016/s0014-5793(97)01000-4. [DOI] [PubMed] [Google Scholar]
  44. Duchen M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol. 1999 Apr 1;516(Pt 1):1–17. doi: 10.1111/j.1469-7793.1999.001aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Duchen M. R., Leyssens A., Crompton M. Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol. 1998 Aug 24;142(4):975–988. doi: 10.1083/jcb.142.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Duchen M. R., McGuinness O., Brown L. A., Crompton M. On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res. 1993 Oct;27(10):1790–1794. doi: 10.1093/cvr/27.10.1790. [DOI] [PubMed] [Google Scholar]
  47. Ellerby H. M., Martin S. J., Ellerby L. M., Naiem S. S., Rabizadeh S., Salvesen G. S., Casiano C. A., Cashman N. R., Green D. R., Bredesen D. E. Establishment of a cell-free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. J Neurosci. 1997 Aug 15;17(16):6165–6178. [PMC free article] [PubMed] [Google Scholar]
  48. Erecińska M., Wilson D. F. Regulation of cellular energy metabolism. J Membr Biol. 1982;70(1):1–14. doi: 10.1007/BF01871584. [DOI] [PubMed] [Google Scholar]
  49. Fleckenstein A., Janke J., Döring H. J., Leder O. Myocardial fiber necrosis due to intracellular Ca overload-a new principle in cardiac pathophysiology. Recent Adv Stud Cardiac Struct Metab. 1974;4:563–580. [PubMed] [Google Scholar]
  50. Friberg H., Ferrand-Drake M., Bengtsson F., Halestrap A. P., Wieloch T. Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci. 1998 Jul 15;18(14):5151–5159. doi: 10.1523/JNEUROSCI.18-14-05151.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Fujii Y., Johnson M. E., Gores G. J. Mitochondrial dysfunction during anoxia/reoxygenation injury of liver sinusoidal endothelial cells. Hepatology. 1994 Jul;20(1 Pt 1):177–185. doi: 10.1016/0270-9139(94)90151-1. [DOI] [PubMed] [Google Scholar]
  52. Ginsburg H., Stein W. D. Biophysical analysis of novel transport pathways induced in red blood cell membranes. J Membr Biol. 1987;96(1):1–10. doi: 10.1007/BF01869329. [DOI] [PubMed] [Google Scholar]
  53. Goldstone T. P., Roos I., Crompton M. Effects of adrenergic agonists and mitochondrial energy state on the Ca2+ transport systems of mitochondria. Biochemistry. 1987 Jan 13;26(1):246–254. doi: 10.1021/bi00375a034. [DOI] [PubMed] [Google Scholar]
  54. Goping I. S., Gross A., Lavoie J. N., Nguyen M., Jemmerson R., Roth K., Korsmeyer S. J., Shore G. C. Regulated targeting of BAX to mitochondria. J Cell Biol. 1998 Oct 5;143(1):207–215. doi: 10.1083/jcb.143.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Griffiths E. J., Halestrap A. P. Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J. 1991 Mar 1;274(Pt 2):611–614. doi: 10.1042/bj2740611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Griffiths E. J., Halestrap A. P. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995 Apr 1;307(Pt 1):93–98. doi: 10.1042/bj3070093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Griffiths E. J., Halestrap A. P. Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993 Dec;25(12):1461–1469. doi: 10.1006/jmcc.1993.1162. [DOI] [PubMed] [Google Scholar]
  58. Griffiths E. J., Stern M. D., Silverman H. S. Measurement of mitochondrial calcium in single living cardiomyocytes by selective removal of cytosolic indo 1. Am J Physiol. 1997 Jul;273(1 Pt 1):C37–C44. doi: 10.1152/ajpcell.1997.273.1.C37. [DOI] [PubMed] [Google Scholar]
  59. Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
  60. Gutteridge J. M., Halliwell B. Reoxygenation injury and antioxidant protection: a tale of two paradoxes. Arch Biochem Biophys. 1990 Dec;283(2):223–226. doi: 10.1016/0003-9861(90)90635-c. [DOI] [PubMed] [Google Scholar]
  61. Halestrap A. P., Davidson A. M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990 May 15;268(1):153–160. doi: 10.1042/bj2680153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Halestrap A. P., Kerr P. M., Javadov S., Woodfield K. Y. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):79–94. doi: 10.1016/s0005-2728(98)00122-4. [DOI] [PubMed] [Google Scholar]
  63. Halestrap A. P., Woodfield K. Y., Connern C. P. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997 Feb 7;272(6):3346–3354. doi: 10.1074/jbc.272.6.3346. [DOI] [PubMed] [Google Scholar]
  64. Hansford R. G. Dehydrogenase activation by Ca2+ in cells and tissues. J Bioenerg Biomembr. 1991 Dec;23(6):823–854. doi: 10.1007/BF00786004. [DOI] [PubMed] [Google Scholar]
  65. Haworth R. A., Hunter D. R. Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J Membr Biol. 1980 Jun 15;54(3):231–236. doi: 10.1007/BF01870239. [DOI] [PubMed] [Google Scholar]
  66. Holloway M. P., Bram R. J. Co-localization of calcium-modulating cyclophilin ligand with intracellular calcium pools. J Biol Chem. 1998 Jun 26;273(26):16346–16350. doi: 10.1074/jbc.273.26.16346. [DOI] [PubMed] [Google Scholar]
  67. Hsu Y. T., Wolter K. G., Youle R. J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3668–3672. doi: 10.1073/pnas.94.8.3668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Hunter D. R., Haworth R. A. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys. 1979 Jul;195(2):468–477. doi: 10.1016/0003-9861(79)90373-4. [DOI] [PubMed] [Google Scholar]
  69. Hüser J., Rechenmacher C. E., Blatter L. A. Imaging the permeability pore transition in single mitochondria. Biophys J. 1998 Apr;74(4):2129–2137. doi: 10.1016/S0006-3495(98)77920-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
  71. Imberti R., Nieminen A. L., Herman B., Lemasters J. J. Synergism of cyclosporin A and phospholipase inhibitors in protection against lethal injury to rat hepatocytes from oxidant chemicals. Res Commun Chem Pathol Pharmacol. 1992 Oct;78(1):27–38. [PubMed] [Google Scholar]
  72. Jennings R. B., Steenbergen C., Jr Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol. 1985;47:727–749. doi: 10.1146/annurev.ph.47.030185.003455. [DOI] [PubMed] [Google Scholar]
  73. Jäschke A., Mi H., Tropschug M. Human T cell cyclophilin18 binds to thiol-specific antioxidant protein Aop1 and stimulates its activity. J Mol Biol. 1998 Apr 10;277(4):763–769. doi: 10.1006/jmbi.1998.1644. [DOI] [PubMed] [Google Scholar]
  74. Jürgensmeier J. M., Xie Z., Deveraux Q., Ellerby L., Bredesen D., Reed J. C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4997–5002. doi: 10.1073/pnas.95.9.4997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Kakalis L. T., Armitage I. M. Solution conformation of a cyclophilin-bound proline isomerase substrate. Biochemistry. 1994 Feb 15;33(6):1495–1501. doi: 10.1021/bi00172a028. [DOI] [PubMed] [Google Scholar]
  76. Kammermeier H., Schmidt P., Jüngling E. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol. 1982 May;14(5):267–277. doi: 10.1016/0022-2828(82)90205-x. [DOI] [PubMed] [Google Scholar]
  77. Kantrow S. P., Piantadosi C. A. Release of cytochrome c from liver mitochondria during permeability transition. Biochem Biophys Res Commun. 1997 Mar 27;232(3):669–671. doi: 10.1006/bbrc.1997.6353. [DOI] [PubMed] [Google Scholar]
  78. Kass G. E., Eriksson J. E., Weis M., Orrenius S., Chow S. C. Chromatin condensation during apoptosis requires ATP. Biochem J. 1996 Sep 15;318(Pt 3):749–752. doi: 10.1042/bj3180749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kass G. E., Juedes M. J., Orrenius S. Cyclosporin A protects hepatocytes against prooxidant-induced cell killing. A study on the role of mitochondrial Ca2+ cycling in cytotoxicity. Biochem Pharmacol. 1992 Nov 17;44(10):1995–2003. doi: 10.1016/0006-2952(92)90102-o. [DOI] [PubMed] [Google Scholar]
  80. Kerr P. M., Suleiman M. S., Halestrap A. P. Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol. 1999 Feb;276(2 Pt 2):H496–H502. doi: 10.1152/ajpheart.1999.276.2.H496. [DOI] [PubMed] [Google Scholar]
  81. Kieffer L. J., Seng T. W., Li W., Osterman D. G., Handschumacher R. E., Bayney R. M. Cyclophilin-40, a protein with homology to the P59 component of the steroid receptor complex. Cloning of the cDNA and further characterization. J Biol Chem. 1993 Jun 15;268(17):12303–12310. [PubMed] [Google Scholar]
  82. Konstantinova S. A., Mannella C. A., Skulachev V. P., Zorov D. B. Immunoelectron microscopic study of the distribution of porin on outer membranes of rat heart mitochondria. J Bioenerg Biomembr. 1995 Feb;27(1):93–99. doi: 10.1007/BF02110336. [DOI] [PubMed] [Google Scholar]
  83. Kowaltowski A. J., Castilho R. F., Vercesi A. E. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett. 1996 Jan 8;378(2):150–152. doi: 10.1016/0014-5793(95)01449-7. [DOI] [PubMed] [Google Scholar]
  84. Kowaltowski A. J., Netto L. E., Vercesi A. E. The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. J Biol Chem. 1998 May 22;273(21):12766–12769. doi: 10.1074/jbc.273.21.12766. [DOI] [PubMed] [Google Scholar]
  85. Kristián T., Siesjö B. K. Calcium in ischemic cell death. Stroke. 1998 Mar;29(3):705–718. doi: 10.1161/01.str.29.3.705. [DOI] [PubMed] [Google Scholar]
  86. Kumar S., Colussi P. A. Prodomains--adaptors--oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochem Sci. 1999 Jan;24(1):1–4. doi: 10.1016/s0968-0004(98)01332-2. [DOI] [PubMed] [Google Scholar]
  87. LeFurgey A., Ingram P., Lieberman M. Quantitative microchemical imaging of calcium in Na-K pump inhibited heart cells. Cell Calcium. 1988 Dec;9(5-6):219–235. doi: 10.1016/0143-4160(88)90003-6. [DOI] [PubMed] [Google Scholar]
  88. Leist M., Nicotera P. The shape of cell death. Biochem Biophys Res Commun. 1997 Jul 9;236(1):1–9. doi: 10.1006/bbrc.1997.6890. [DOI] [PubMed] [Google Scholar]
  89. Leist M., Single B., Castoldi A. F., Kühnle S., Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997 Apr 21;185(8):1481–1486. doi: 10.1084/jem.185.8.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Lemasters J. J., Nieminen A. L., Qian T., Trost L. C., Elmore S. P., Nishimura Y., Crowe R. A., Cascio W. E., Bradham C. A., Brenner D. A. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):177–196. doi: 10.1016/s0005-2728(98)00112-1. [DOI] [PubMed] [Google Scholar]
  91. Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):53–67. doi: 10.1016/s0005-2728(98)00120-0. [DOI] [PubMed] [Google Scholar]
  92. Leo R., Praticò D., Iuliano L., Pulcinelli F. M., Ghiselli A., Pignatelli P., Colavita A. R., FitzGerald G. A., Violi F. Platelet activation by superoxide anion and hydroxyl radicals intrinsically generated by platelets that had undergone anoxia and then reoxygenated. Circulation. 1997 Feb 18;95(4):885–891. doi: 10.1161/01.cir.95.4.885. [DOI] [PubMed] [Google Scholar]
  93. Leyssens A., Nowicky A. V., Patterson L., Crompton M., Duchen M. R. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. J Physiol. 1996 Oct 1;496(Pt 1):111–128. doi: 10.1113/jphysiol.1996.sp021669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Li H., Zhu H., Xu C. J., Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998 Aug 21;94(4):491–501. doi: 10.1016/s0092-8674(00)81590-1. [DOI] [PubMed] [Google Scholar]
  95. Lin L. N., Hasumi H., Brandts J. F. Catalysis of proline isomerization during protein-folding reactions. Biochim Biophys Acta. 1988 Oct 12;956(3):256–266. doi: 10.1016/0167-4838(88)90142-2. [DOI] [PubMed] [Google Scholar]
  96. Liu J., Albers M. W., Wandless T. J., Luan S., Alberg D. G., Belshaw P. J., Cohen P., MacKintosh C., Klee C. B., Schreiber S. L. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry. 1992 Apr 28;31(16):3896–3901. doi: 10.1021/bi00131a002. [DOI] [PubMed] [Google Scholar]
  97. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996 Jul 12;86(1):147–157. doi: 10.1016/s0092-8674(00)80085-9. [DOI] [PubMed] [Google Scholar]
  98. Lodish H. F., Kong N. Cyclosporin A inhibits an initial step in folding of transferrin within the endoplasmic reticulum. J Biol Chem. 1991 Aug 15;266(23):14835–14838. [PubMed] [Google Scholar]
  99. Lohret T. A., Murphy R. C., Drgoñ T., Kinnally K. W. Activity of the mitochondrial multiple conductance channel is independent of the adenine nucleotide translocator. J Biol Chem. 1996 Mar 1;271(9):4846–4849. doi: 10.1074/jbc.271.9.4846. [DOI] [PubMed] [Google Scholar]
  100. Luo X., Budihardjo I., Zou H., Slaughter C., Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998 Aug 21;94(4):481–490. doi: 10.1016/s0092-8674(00)81589-5. [DOI] [PubMed] [Google Scholar]
  101. Lê Quôc K., Lê Quôc D. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys. 1988 Sep;265(2):249–257. doi: 10.1016/0003-9861(88)90125-7. [DOI] [PubMed] [Google Scholar]
  102. Mahajan N. P., Linder K., Berry G., Gordon G. W., Heim R., Herman B. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol. 1998 Jun;16(6):547–552. doi: 10.1038/nbt0698-547. [DOI] [PubMed] [Google Scholar]
  103. Majima E., Yamaguchi N., Chuman H., Shinohara Y., Ishida M., Goto S., Terada H. Binding of the fluorescein derivative eosin Y to the mitochondrial ADP/ATP carrier: characterization of the adenine nucleotide binding site. Biochemistry. 1998 Jan 6;37(1):424–432. doi: 10.1021/bi9710683. [DOI] [PubMed] [Google Scholar]
  104. Mancini M., Nicholson D. W., Roy S., Thornberry N. A., Peterson E. P., Casciola-Rosen L. A., Rosen A. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol. 1998 Mar 23;140(6):1485–1495. doi: 10.1083/jcb.140.6.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Marchetti P., Castedo M., Susin S. A., Zamzami N., Hirsch T., Macho A., Haeffner A., Hirsch F., Geuskens M., Kroemer G. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996 Sep 1;184(3):1155–1160. doi: 10.1084/jem.184.3.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Marklund S. L. Role of toxic effects of oxygen in reperfusion damage. J Mol Cell Cardiol. 1988 Mar;20 (Suppl 2):23–30. doi: 10.1016/0022-2828(88)90329-x. [DOI] [PubMed] [Google Scholar]
  107. Marzo I., Brenner C., Zamzami N., Jürgensmeier J. M., Susin S. A., Vieira H. L., Prévost M. C., Xie Z., Matsuyama S., Reed J. C. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science. 1998 Sep 25;281(5385):2027–2031. doi: 10.1126/science.281.5385.2027. [DOI] [PubMed] [Google Scholar]
  108. Marzo I., Brenner C., Zamzami N., Susin S. A., Beutner G., Brdiczka D., Rémy R., Xie Z. H., Reed J. C., Kroemer G. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med. 1998 Apr 20;187(8):1261–1271. doi: 10.1084/jem.187.8.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Massberg S., Enders G., Leiderer R., Eisenmenger S., Vestweber D., Krombach F., Messmer K. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood. 1998 Jul 15;92(2):507–515. [PubMed] [Google Scholar]
  110. Matouschek A., Rospert S., Schmid K., Glick B. S., Schatz G. Cyclophilin catalyzes protein folding in yeast mitochondria. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6319–6323. doi: 10.1073/pnas.92.14.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. McCabe E. R. Microcompartmentation of energy metabolism at the outer mitochondrial membrane: role in diabetes mellitus and other diseases. J Bioenerg Biomembr. 1994 Jun;26(3):317–325. doi: 10.1007/BF00763103. [DOI] [PubMed] [Google Scholar]
  112. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  113. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  114. McEnery M. W., Snowman A. M., Trifiletti R. R., Snyder S. H. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3170–3174. doi: 10.1073/pnas.89.8.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. McGuinness O., Yafei N., Costi A., Crompton M. The presence of two classes of high-affinity cyclosporin A binding sites in mitochondria. Evidence that the minor component is involved in the opening of an inner-membrane Ca(2+)-dependent pore. Eur J Biochem. 1990 Dec 12;194(2):671–679. doi: 10.1111/j.1432-1033.1990.tb15667.x. [DOI] [PubMed] [Google Scholar]
  116. Mi H., Kops O., Zimmermann E., Jäschke A., Tropschug M. A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett. 1996 Dec 2;398(2-3):201–205. doi: 10.1016/s0014-5793(96)01248-3. [DOI] [PubMed] [Google Scholar]
  117. Mikol V., Kallen J., Walkinshaw M. D. X-ray structure of a cyclophilin B/cyclosporin complex: comparison with cyclophilin A and delineation of its calcineurin-binding domain. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5183–5186. doi: 10.1073/pnas.91.11.5183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Miyamae M., Camacho S. A., Weiner M. W., Figueredo V. M. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol. 1996 Nov;271(5 Pt 2):H2145–H2153. doi: 10.1152/ajpheart.1996.271.5.H2145. [DOI] [PubMed] [Google Scholar]
  119. Miyata H., Lakatta E. G., Stern M. D., Silverman H. S. Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res. 1992 Sep;71(3):605–613. doi: 10.1161/01.res.71.3.605. [DOI] [PubMed] [Google Scholar]
  120. Miyata H., Silverman H. S., Sollott S. J., Lakatta E. G., Stern M. D., Hansford R. G. Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am J Physiol. 1991 Oct;261(4 Pt 2):H1123–H1134. doi: 10.1152/ajpheart.1991.261.4.H1123. [DOI] [PubMed] [Google Scholar]
  121. Moynagh P. N. Contact sites and transport in mitochondria. Essays Biochem. 1995;30:1–14. [PubMed] [Google Scholar]
  122. Muchmore S. W., Sattler M., Liang H., Meadows R. P., Harlan J. E., Yoon H. S., Nettesheim D., Chang B. S., Thompson C. B., Wong S. L. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature. 1996 May 23;381(6580):335–341. doi: 10.1038/381335a0. [DOI] [PubMed] [Google Scholar]
  123. Murphy E., Jacob R., Lieberman M. Cytosolic free calcium in chick heart cells. Its role in cell injury. J Mol Cell Cardiol. 1985 Mar;17(3):221–231. doi: 10.1016/s0022-2828(85)80005-5. [DOI] [PubMed] [Google Scholar]
  124. Murphy E., Perlman M., London R. E., Steenbergen C. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res. 1991 May;68(5):1250–1258. doi: 10.1161/01.res.68.5.1250. [DOI] [PubMed] [Google Scholar]
  125. Narita M., Shimizu S., Ito T., Chittenden T., Lutz R. J., Matsuda H., Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14681–14686. doi: 10.1073/pnas.95.25.14681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Nazareth W., Yafei N., Crompton M. Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol. 1991 Dec;23(12):1351–1354. doi: 10.1016/0022-2828(91)90181-k. [DOI] [PubMed] [Google Scholar]
  127. Nguyen M., Millar D. G., Yong V. W., Korsmeyer S. J., Shore G. C. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem. 1993 Dec 5;268(34):25265–25268. [PubMed] [Google Scholar]
  128. Nicholls D. G., Brand M. D. The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides. Biochem J. 1980 Apr 15;188(1):113–118. doi: 10.1042/bj1880113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Nicholls D. G., Crompton M. Mitochondrial calcium transport. FEBS Lett. 1980 Mar 10;111(2):261–268. doi: 10.1016/0014-5793(80)80806-4. [DOI] [PubMed] [Google Scholar]
  130. Nicholls D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 1978 Nov 15;176(2):463–474. doi: 10.1042/bj1760463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Nicolli A., Basso E., Petronilli V., Wenger R. M., Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996 Jan 26;271(4):2185–2192. doi: 10.1074/jbc.271.4.2185. [DOI] [PubMed] [Google Scholar]
  132. Nicolli A., Petronilli V., Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry. 1993 Apr 27;32(16):4461–4465. doi: 10.1021/bi00067a039. [DOI] [PubMed] [Google Scholar]
  133. Nicotera P., Bellomo G., Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol. 1992;32:449–470. doi: 10.1146/annurev.pa.32.040192.002313. [DOI] [PubMed] [Google Scholar]
  134. Nieminen A. L., Byrne A. M., Herman B., Lemasters J. J. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol. 1997 Apr;272(4 Pt 1):C1286–C1294. doi: 10.1152/ajpcell.1997.272.4.C1286. [DOI] [PubMed] [Google Scholar]
  135. Nieminen A. L., Petrie T. G., Lemasters J. J., Selman W. R. Cyclosporin A delays mitochondrial depolarization induced by N-methyl-D-aspartate in cortical neurons: evidence of the mitochondrial permeability transition. Neuroscience. 1996 Dec;75(4):993–997. doi: 10.1016/0306-4522(96)00378-8. [DOI] [PubMed] [Google Scholar]
  136. Nieminen A. L., Saylor A. K., Tesfai S. A., Herman B., Lemasters J. J. Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J. 1995 Apr 1;307(Pt 1):99–106. doi: 10.1042/bj3070099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Nishiki K., Erecińska M., Wilson D. F. Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart. Am J Physiol. 1978 Mar;234(3):C73–C81. doi: 10.1152/ajpcell.1978.234.3.C73. [DOI] [PubMed] [Google Scholar]
  138. Novgorodov S. A., Gudz T. I., Milgrom Y. M., Brierley G. P. The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A. J Biol Chem. 1992 Aug 15;267(23):16274–16282. [PubMed] [Google Scholar]
  139. Pan G., O'Rourke K., Dixit V. M. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem. 1998 Mar 6;273(10):5841–5845. doi: 10.1074/jbc.273.10.5841. [DOI] [PubMed] [Google Scholar]
  140. Pastorino J. G., Snyder J. W., Serroni A., Hoek J. B., Farber J. L. Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem. 1993 Jul 5;268(19):13791–13798. [PubMed] [Google Scholar]
  141. Petronilli V., Cola C., Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. J Biol Chem. 1993 Jan 15;268(2):1011–1016. [PubMed] [Google Scholar]
  142. Petronilli V., Cola C., Massari S., Colonna R., Bernardi P. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem. 1993 Oct 15;268(29):21939–21945. [PubMed] [Google Scholar]
  143. Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994 Jun 17;269(24):16638–16642. [PubMed] [Google Scholar]
  144. Petronilli V., Szabò I., Zoratti M. The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett. 1989 Dec 18;259(1):137–143. doi: 10.1016/0014-5793(89)81513-3. [DOI] [PubMed] [Google Scholar]
  145. Piper H. M., Siegmund B., Ladilov YuV, Schlüter K. D. Calcium and sodium control in hypoxic-reoxygenated cardiomyocytes. Basic Res Cardiol. 1993 Sep-Oct;88(5):471–482. doi: 10.1007/BF00795413. [DOI] [PubMed] [Google Scholar]
  146. Price E. R., Jin M., Lim D., Pati S., Walsh C. T., McKeon F. D. Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3931–3935. doi: 10.1073/pnas.91.9.3931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Pérez-Pinzón M. A., Xu G. P., Born J., Lorenzo J., Busto R., Rosenthal M., Sick T. J. Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J Cereb Blood Flow Metab. 1999 Jan;19(1):39–43. doi: 10.1097/00004647-199901000-00004. [DOI] [PubMed] [Google Scholar]
  148. Qian T., Nieminen A. L., Herman B., Lemasters J. J. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol. 1997 Dec;273(6 Pt 1):C1783–C1792. doi: 10.1152/ajpcell.1997.273.6.C1783. [DOI] [PubMed] [Google Scholar]
  149. Ratajczak T., Carrello A., Mark P. J., Warner B. J., Simpson R. J., Moritz R. L., House A. K. The cyclophilin component of the unactivated estrogen receptor contains a tetratricopeptide repeat domain and shares identity with p59 (FKBP59). J Biol Chem. 1993 Jun 25;268(18):13187–13192. [PubMed] [Google Scholar]
  150. Reed J. C. Cytochrome c: can't live with it--can't live without it. Cell. 1997 Nov 28;91(5):559–562. doi: 10.1016/s0092-8674(00)80442-0. [DOI] [PubMed] [Google Scholar]
  151. Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett. 1988 Dec 5;241(1-2):1–5. doi: 10.1016/0014-5793(88)81018-4. [DOI] [PubMed] [Google Scholar]
  152. Richter C. Pro-oxidants and mitochondrial Ca2+: their relationship to apoptosis and oncogenesis. FEBS Lett. 1993 Jun 28;325(1-2):104–107. doi: 10.1016/0014-5793(93)81423-w. [DOI] [PubMed] [Google Scholar]
  153. Richter C., Schweizer M., Cossarizza A., Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996 Jan 8;378(2):107–110. doi: 10.1016/0014-5793(95)01431-4. [DOI] [PubMed] [Google Scholar]
  154. Rinfret A., Collins C., Ménard R., Anderson S. K. The N-terminal cyclophilin-homologous domain of a 150-kilodalton tumor recognition molecule exhibits both peptidylprolyl cis-trans-isomerase and chaperone activities. Biochemistry. 1994 Feb 22;33(7):1668–1673. doi: 10.1021/bi00173a008. [DOI] [PubMed] [Google Scholar]
  155. Rizzuto R., Brini M., Murgia M., Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993 Oct 29;262(5134):744–747. doi: 10.1126/science.8235595. [DOI] [PubMed] [Google Scholar]
  156. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A., Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998 Jun 12;280(5370):1763–1766. doi: 10.1126/science.280.5370.1763. [DOI] [PubMed] [Google Scholar]
  157. Robb-Gaspers L. D., Rutter G. A., Burnett P., Hajnóczky G., Denton R. M., Thomas A. P. Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):17–32. doi: 10.1016/s0005-2728(98)00118-2. [DOI] [PubMed] [Google Scholar]
  158. Rojo M., Wallimann T. The mitochondrial ATP/ADP carrier: interaction with detergents and purification by a novel procedure. Biochim Biophys Acta. 1994 Sep 27;1187(3):360–367. doi: 10.1016/0005-2728(94)90010-8. [DOI] [PubMed] [Google Scholar]
  159. Rossé T., Olivier R., Monney L., Rager M., Conus S., Fellay I., Jansen B., Borner C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature. 1998 Jan 29;391(6666):496–499. doi: 10.1038/35160. [DOI] [PubMed] [Google Scholar]
  160. Rostovtseva T., Colombini M. VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J. 1997 May;72(5):1954–1962. doi: 10.1016/S0006-3495(97)78841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Rutter G. A., Burnett P., Rizzuto R., Brini M., Murgia M., Pozzan T., Tavaré J. M., Denton R. M. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5489–5494. doi: 10.1073/pnas.93.11.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Rück A., Dolder M., Wallimann T., Brdiczka D. Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 1998 Apr 10;426(1):97–101. doi: 10.1016/s0014-5793(98)00317-2. [DOI] [PubMed] [Google Scholar]
  163. Scaffidi C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K. J., Debatin K. M., Krammer P. H., Peter M. E. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998 Mar 16;17(6):1675–1687. doi: 10.1093/emboj/17.6.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Schneider H., Charara N., Schmitz R., Wehrli S., Mikol V., Zurini M. G., Quesniaux V. F., Movva N. R. Human cyclophilin C: primary structure, tissue distribution, and determination of binding specificity for cyclosporins. Biochemistry. 1994 Jul 12;33(27):8218–8224. doi: 10.1021/bi00193a007. [DOI] [PubMed] [Google Scholar]
  165. Scholz W., Albus U. Na+/H+ exchange and its inhibition in cardiac ischemia and reperfusion. Basic Res Cardiol. 1993 Sep-Oct;88(5):443–455. doi: 10.1007/BF00795411. [DOI] [PubMed] [Google Scholar]
  166. Scorrano L., Petronilli V., Bernardi P. On the voltage dependence of the mitochondrial permeability transition pore. A critical appraisal. J Biol Chem. 1997 May 9;272(19):12295–12299. doi: 10.1074/jbc.272.19.12295. [DOI] [PubMed] [Google Scholar]
  167. Simpson P. B., Russell J. T. Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J Biol Chem. 1996 Dec 27;271(52):33493–33501. doi: 10.1074/jbc.271.52.33493. [DOI] [PubMed] [Google Scholar]
  168. Skulachev V. P. Power transmission along biological membranes. J Membr Biol. 1990 Mar;114(2):97–112. doi: 10.1007/BF01869092. [DOI] [PubMed] [Google Scholar]
  169. Srinivasula S. M., Ahmad M., Fernandes-Alnemri T., Alnemri E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. 1998 Jun;1(7):949–957. doi: 10.1016/s1097-2765(00)80095-7. [DOI] [PubMed] [Google Scholar]
  170. Steenbergen C., Murphy E., Watts J. A., London R. E. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res. 1990 Jan;66(1):135–146. doi: 10.1161/01.res.66.1.135. [DOI] [PubMed] [Google Scholar]
  171. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Brenner C., Larochette N., Prévost M. C., Alzari P. M., Kroemer G. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med. 1999 Jan 18;189(2):381–394. doi: 10.1084/jem.189.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Mangion J., Jacotot E., Costantini P., Loeffler M. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999 Feb 4;397(6718):441–446. doi: 10.1038/17135. [DOI] [PubMed] [Google Scholar]
  173. Susin S. A., Zamzami N., Castedo M., Hirsch T., Marchetti P., Macho A., Daugas E., Geuskens M., Kroemer G. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med. 1996 Oct 1;184(4):1331–1341. doi: 10.1084/jem.184.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Szabó I., Bernardi P., Zoratti M. Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem. 1992 Feb 15;267(5):2940–2946. [PubMed] [Google Scholar]
  175. Szabó I., Zoratti M. The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem. 1991 Feb 25;266(6):3376–3379. [PubMed] [Google Scholar]
  176. Tanveer A., Virji S., Andreeva L., Totty N. F., Hsuan J. J., Ward J. M., Crompton M. Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur J Biochem. 1996 May 15;238(1):166–172. doi: 10.1111/j.1432-1033.1996.0166q.x. [DOI] [PubMed] [Google Scholar]
  177. Thériault Y., Logan T. M., Meadows R., Yu L., Olejniczak E. T., Holzman T. F., Simmer R. L., Fesik S. W. Solution structure of the cyclosporin A/cyclophilin complex by NMR. Nature. 1993 Jan 7;361(6407):88–91. doi: 10.1038/361088a0. [DOI] [PubMed] [Google Scholar]
  178. Tuena de Gómez-Puyou M., Sandoval F., García J. J., Gómez-Puyou A. Synthesis and release of ATP by soluble mitochondrial F1 in complex with its inhibitor protein during dimethylsulfoxide-water transitions. Eur J Biochem. 1998 Jul 1;255(1):303–308. doi: 10.1046/j.1432-1327.1998.2550303.x. [DOI] [PubMed] [Google Scholar]
  179. Turrens J. F., Freeman B. A., Levitt J. G., Crapo J. D. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys. 1982 Sep;217(2):401–410. doi: 10.1016/0003-9861(82)90518-5. [DOI] [PubMed] [Google Scholar]
  180. Vance J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990 May 5;265(13):7248–7256. [PubMed] [Google Scholar]
  181. Vander Heiden M. G., Chandel N. S., Williamson E. K., Schumacker P. T., Thompson C. B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell. 1997 Nov 28;91(5):627–637. doi: 10.1016/s0092-8674(00)80450-x. [DOI] [PubMed] [Google Scholar]
  182. Veinot J. P., Gattinger D. A., Fliss H. Early apoptosis in human myocardial infarcts. Hum Pathol. 1997 Apr;28(4):485–492. doi: 10.1016/s0046-8177(97)90039-3. [DOI] [PubMed] [Google Scholar]
  183. Vincent M. F., Van den Berghe G., Hers H. G. The pathway of adenine nucleotide catabolism and its control in isolated rat hepatocytes subjected to anoxia. Biochem J. 1982 Jan 15;202(1):117–123. doi: 10.1042/bj2020117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Wang B. B., Hayenga K. J., Payan D. G., Fisher J. M. Identification of a nuclear-specific cyclophilin which interacts with the proteinase inhibitor eglin c. Biochem J. 1996 Feb 15;314(Pt 1):313–319. doi: 10.1042/bj3140313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Williams J. N., Jr A comparative study of cytochrome ratios in mitochondria from organs of the rat, chicken, and guinea pig. Biochim Biophys Acta. 1968 Aug 20;162(2):175–181. doi: 10.1016/0005-2728(68)90100-x. [DOI] [PubMed] [Google Scholar]
  186. Woodfield K., Rück A., Brdiczka D., Halestrap A. P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998 Dec 1;336(Pt 2):287–290. doi: 10.1042/bj3360287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Wu J., Matunis M. J., Kraemer D., Blobel G., Coutavas E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem. 1995 Jun 9;270(23):14209–14213. doi: 10.1074/jbc.270.23.14209. [DOI] [PubMed] [Google Scholar]
  188. Wu J., Matunis M. J., Kraemer D., Blobel G., Coutavas E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem. 1995 Jun 9;270(23):14209–14213. doi: 10.1074/jbc.270.23.14209. [DOI] [PubMed] [Google Scholar]
  189. Yoshida H., Kong Y. Y., Yoshida R., Elia A. J., Hakem A., Hakem R., Penninger J. M., Mak T. W. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 1998 Sep 18;94(6):739–750. doi: 10.1016/s0092-8674(00)81733-x. [DOI] [PubMed] [Google Scholar]
  190. Zahrebelski G., Nieminen A. L., al-Ghoul K., Qian T., Herman B., Lemasters J. J. Progression of subcellular changes during chemical hypoxia to cultured rat hepatocytes: a laser scanning confocal microscopic study. Hepatology. 1995 May;21(5):1361–1372. [PubMed] [Google Scholar]
  191. Zamzami N., Susin S. A., Marchetti P., Hirsch T., Gómez-Monterrey I., Castedo M., Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996 Apr 1;183(4):1533–1544. doi: 10.1084/jem.183.4.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Zingarelli B., Salzman A. L., Szabó C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res. 1998 Jul 13;83(1):85–94. doi: 10.1161/01.res.83.1.85. [DOI] [PubMed] [Google Scholar]
  193. Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]
  194. Zou H., Henzel W. J., Liu X., Lutschg A., Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997 Aug 8;90(3):405–413. doi: 10.1016/s0092-8674(00)80501-2. [DOI] [PubMed] [Google Scholar]
  195. de Jong D., Prins F. A., Mason D. Y., Reed J. C., van Ommen G. B., Kluin P. M. Subcellular localization of the bcl-2 protein in malignant and normal lymphoid cells. Cancer Res. 1994 Jan 1;54(1):256–260. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES