Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Aug 15;342(Pt 1):49–56.

Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.

J M Upston 1, A Karjalainen 1, F L Bygrave 1, R Stocker 1
PMCID: PMC1220435  PMID: 10432299

Abstract

Ascorbate (AH, the reduced form of vitamin C) is an important radical scavenger and antioxidant in human plasma; the resulting ascorbyl radical can disproportionate to AH and dehydroascorbic acid (DHA). Here we address potential maintenance mechanism(s) for extracellular AH by examining the ability of cells to convert extracellularly presented DHA to AH. DHA was rapidly transported into human liver (HepG2), endothelial and whole blood cells in vitro by plasma membrane glucose transporters and reduced intracellularly. Liver cells displayed the highest capacity to release the intracellularly accumulated AH. The proteins responsible for DHA uptake and AH release could be distinguished by inhibitor studies. Thus, unlike DHA uptake, AH efflux was largely insensitive to cytochalasin B and thiol-reactive agents but was inhibited by phloretin, 4,4'-di-isothiocyanostilbene-2,2'-disulphonate and isoascorbate. Efflux of AH from cells was temperature-sensitive and saturable with a low affinity (millimolar, intracellular) for AH. In addition to isolated liver cells, perfusion of intact rat and guinea-pig liver with DHA resulted in AH in the circulating perfusate. Our results show that hepatocytes take up and reduce DHA and subsequently release part of the AH formed, probably via a membrane transporter. By converting extracellular DHA to extracellular AH, the liver might contribute to the maintenance of plasma AH, a process that could be important under conditions of oxidative stress.

Full Text

The Full Text of this article is available as a PDF (152.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M., SHAVIT N. A SENSITIVE AND SIMPLE METHOD FOR DETERMINATION OF FERROCYANIDE. Anal Biochem. 1963 Dec;6:549–554. doi: 10.1016/0003-2697(63)90149-0. [DOI] [PubMed] [Google Scholar]
  2. Alcain F. J., Buron M. I., Villalba J. M., Navas P. Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. Biochim Biophys Acta. 1991 Mar 4;1073(2):380–385. doi: 10.1016/0304-4165(91)90146-8. [DOI] [PubMed] [Google Scholar]
  3. Bergsten P., Amitai G., Kehrl J., Dhariwal K. R., Klein H. G., Levine M. Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes. Depletion and reaccumulation. J Biol Chem. 1990 Feb 15;265(5):2584–2587. [PubMed] [Google Scholar]
  4. Bergsten P., Yu R., Kehrl J., Levine M. Ascorbic acid transport and distribution in human B lymphocytes. Arch Biochem Biophys. 1995 Feb 20;317(1):208–214. doi: 10.1006/abbi.1995.1155. [DOI] [PubMed] [Google Scholar]
  5. Bode A. M., Yavarow C. R., Fry D. A., Vargas T. Enzymatic basis for altered ascorbic acid and dehydroascorbic acid levels in diabetes. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1347–1353. doi: 10.1006/bbrc.1993.1365. [DOI] [PubMed] [Google Scholar]
  6. Buettner G. R. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993 Feb 1;300(2):535–543. doi: 10.1006/abbi.1993.1074. [DOI] [PubMed] [Google Scholar]
  7. Buettner G. R. Use of ascorbate as test for catalytic metals in simple buffers. Methods Enzymol. 1990;186:125–127. doi: 10.1016/0076-6879(90)86100-a. [DOI] [PubMed] [Google Scholar]
  8. Bánhegyi G., Marcolongo P., Puskás F., Fulceri R., Mandl J., Benedetti A. Dehydroascorbate and ascorbate transport in rat liver microsomal vesicles. J Biol Chem. 1998 Jan 30;273(5):2758–2762. doi: 10.1074/jbc.273.5.2758. [DOI] [PubMed] [Google Scholar]
  9. Crane F. L., Sun I. L., Clark M. G., Grebing C., Löw H. Transplasma-membrane redox systems in growth and development. Biochim Biophys Acta. 1985 Aug 1;811(3):233–264. doi: 10.1016/0304-4173(85)90013-8. [DOI] [PubMed] [Google Scholar]
  10. Devés R., Krupka R. M. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier. Biochim Biophys Acta. 1978 Jul 4;510(2):339–348. doi: 10.1016/0005-2736(78)90034-2. [DOI] [PubMed] [Google Scholar]
  11. Dhariwal K. R., Hartzell W. O., Levine M. Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am J Clin Nutr. 1991 Oct;54(4):712–716. doi: 10.1093/ajcn/54.4.712. [DOI] [PubMed] [Google Scholar]
  12. Frei B., Stocker R., Ames B. N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9748–9752. doi: 10.1073/pnas.85.24.9748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldenberg H., Schweinzer E. Transport of vitamin C in animal and human cells. J Bioenerg Biomembr. 1994 Aug;26(4):359–367. doi: 10.1007/BF00762776. [DOI] [PubMed] [Google Scholar]
  14. Guillam M. T., Burcelin R., Thorens B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12317–12321. doi: 10.1073/pnas.95.21.12317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Helbig H., Korbmacher C., Wohlfarth J., Berweck S., Kühner D., Wiederholt M. Electrogenic Na+-ascorbate cotransport in cultured bovine pigmented ciliary epithelial cells. Am J Physiol. 1989 Jan;256(1 Pt 1):C44–C49. doi: 10.1152/ajpcell.1989.256.1.C44. [DOI] [PubMed] [Google Scholar]
  16. Himmelreich U., Drew K. N., Serianni A. S., Kuchel P. W. 13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes. Biochemistry. 1998 May 19;37(20):7578–7588. doi: 10.1021/bi970765s. [DOI] [PubMed] [Google Scholar]
  17. Hughes R. E., Maton S. C. The passage of vitamin C across the erythrocyte membrane. Br J Haematol. 1968 Mar;14(3):247–253. doi: 10.1111/j.1365-2141.1968.tb01494.x. [DOI] [PubMed] [Google Scholar]
  18. Iheanacho E. N., Hunt N. H., Stocker R. Vitamin C redox reactions in blood of normal and malaria-infected mice studied with isoascorbate as a nonisotopic marker. Free Radic Biol Med. 1995 Mar;18(3):543–552. doi: 10.1016/0891-5849(94)00182-j. [DOI] [PubMed] [Google Scholar]
  19. Jennings M. L., Passow H. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4'-diisothiocyano dihydrostilbene-2,2'-disulfonate. Biochim Biophys Acta. 1979 Jul 5;554(2):498–519. doi: 10.1016/0005-2736(79)90387-0. [DOI] [PubMed] [Google Scholar]
  20. Karjalainen A., Bygrave F. L. The synergistic action (cross-talk) of glucagon and vasopressin induces early bile flow and plasma-membrane calcium fluxes in the perfused rat liver. Biochem J. 1994 Jul 1;301(Pt 1):187–192. doi: 10.1042/bj3010187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kim M. J., Dawes J., Jessup W. Transendothelial transport of modified low-density lipoproteins. Atherosclerosis. 1994 Jul;108(1):5–17. doi: 10.1016/0021-9150(94)90033-7. [DOI] [PubMed] [Google Scholar]
  22. Kozlovsky N., Rudich A., Potashnik R., Ebina Y., Murakami T., Bashan N. Transcriptional activation of the Glut1 gene in response to oxidative stress in L6 myotubes. J Biol Chem. 1997 Dec 26;272(52):33367–33372. doi: 10.1074/jbc.272.52.33367. [DOI] [PubMed] [Google Scholar]
  23. Maellaro E., Del Bello B., Sugherini L., Santucci A., Comporti M., Casini A. F. Purification and characterization of glutathione-dependent dehydroascorbate reductase from rat liver. Biochem J. 1994 Jul 15;301(Pt 2):471–476. doi: 10.1042/bj3010471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. May J. M., Qu Z. C., Whitesell R. R. Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes. Biochemistry. 1995 Oct 3;34(39):12721–12728. doi: 10.1021/bi00039a031. [DOI] [PubMed] [Google Scholar]
  25. Navas P., Sun I. L., Morré D. J., Crane F. L. Decrease of NADH in HeLa cells in the presence of transferrin or ferricyanide. Biochem Biophys Res Commun. 1986 Feb 26;135(1):110–115. doi: 10.1016/0006-291x(86)90949-6. [DOI] [PubMed] [Google Scholar]
  26. Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr. 1991 Dec;54(6 Suppl):1119S–1124S. doi: 10.1093/ajcn/54.6.1119s. [DOI] [PubMed] [Google Scholar]
  27. Rose R. C. Transport of ascorbic acid and other water-soluble vitamins. Biochim Biophys Acta. 1988 Jun 9;947(2):335–366. doi: 10.1016/0304-4157(88)90014-7. [DOI] [PubMed] [Google Scholar]
  28. Schweinzer E., Goldenberg H. Monodehydroascorbate reductase activity in the surface membrane of leukemic cells. Characterization by a ferricyanide-driven redox cycle. Eur J Biochem. 1993 Dec 15;218(3):1057–1062. doi: 10.1111/j.1432-1033.1993.tb18465.x. [DOI] [PubMed] [Google Scholar]
  29. Socci R. R., Delamere N. A. Characteristics of ascorbate transport in the rabbit iris-ciliary body. Exp Eye Res. 1988 Jun;46(6):853–861. doi: 10.1016/s0014-4835(88)80037-x. [DOI] [PubMed] [Google Scholar]
  30. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  31. Stocker R., Hunt N. H., Weidemann M. J., Clark I. A. Protection of vitamin E from oxidation by increased ascorbic acid content within Plasmodium vinckei-infected erythrocytes. Biochim Biophys Acta. 1986 Apr 15;876(2):294–299. doi: 10.1016/0005-2760(86)90287-0. [DOI] [PubMed] [Google Scholar]
  32. Stocker R., Winterhalter K. H., Richter C. Increased fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene in the phorbol myristate acetate-stimulated plasma membrane of human neutrophils. FEBS Lett. 1982 Aug 2;144(2):199–203. doi: 10.1016/0014-5793(82)80637-6. [DOI] [PubMed] [Google Scholar]
  33. Van Duijn M. M., Van der Zee J., VanSteveninck J., Van den Broek P. J. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J Biol Chem. 1998 May 29;273(22):13415–13420. doi: 10.1074/jbc.273.22.13415. [DOI] [PubMed] [Google Scholar]
  34. Vera J. C., Rivas C. I., Fischbarg J., Golde D. W. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature. 1993 Jul 1;364(6432):79–82. doi: 10.1038/364079a0. [DOI] [PubMed] [Google Scholar]
  35. Vera J. C., Rivas C. I., Zhang R. H., Farber C. M., Golde D. W. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood. 1994 Sep 1;84(5):1628–1634. [PubMed] [Google Scholar]
  36. Wang Y., Russo T. A., Kwon O., Chanock S., Rumsey S. C., Levine M. Ascorbate recycling in human neutrophils: induction by bacteria. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13816–13819. doi: 10.1073/pnas.94.25.13816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Washko P. W., Welch R. W., Dhariwal K. R., Wang Y., Levine M. Ascorbic acid and dehydroascorbic acid analyses in biological samples. Anal Biochem. 1992 Jul;204(1):1–14. doi: 10.1016/0003-2697(92)90131-p. [DOI] [PubMed] [Google Scholar]
  38. Washko P., Levine M. Inhibition of ascorbic acid transport in human neutrophils by glucose. J Biol Chem. 1992 Nov 25;267(33):23568–23574. [PubMed] [Google Scholar]
  39. Washko P., Rotrosen D., Levine M. Ascorbic acid transport and accumulation in human neutrophils. J Biol Chem. 1989 Nov 15;264(32):18996–19002. [PubMed] [Google Scholar]
  40. Welch R. W., Bergsten P., Butler J. D., Levine M. Ascorbic acid accumulation and transport in human fibroblasts. Biochem J. 1993 Sep 1;294(Pt 2):505–510. doi: 10.1042/bj2940505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Welch R. W., Wang Y., Crossman A., Jr, Park J. B., Kirk K. L., Levine M. Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J Biol Chem. 1995 May 26;270(21):12584–12592. doi: 10.1074/jbc.270.21.12584. [DOI] [PubMed] [Google Scholar]
  42. Wells W. W., Xu D. P., Yang Y. F., Rocque P. A. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem. 1990 Sep 15;265(26):15361–15364. [PubMed] [Google Scholar]
  43. Wohlhueter R. M., Marz R., Graff J. C., Plagemann P. G. A rapid-mixing technique to measure transport in suspended animal cells: applications to nucleoside transport in Novikoff rat hepatoma cells. Methods Cell Biol. 1978;20:211–236. doi: 10.1016/s0091-679x(08)62020-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES