Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Sep 15;342(Pt 3):481–496.

Repression of gene expression by oxidative stress.

Y Morel 1, R Barouki 1
PMCID: PMC1220487  PMID: 10477257

Abstract

Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS.

Full Text

The Full Text of this article is available as a PDF (220.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abate C., Patel L., Rauscher F. J., 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990 Sep 7;249(4973):1157–1161. doi: 10.1126/science.2118682. [DOI] [PubMed] [Google Scholar]
  2. Abdel-Razzak Z., Corcos L., Fautrel A., Guillouzo A. Interleukin-1 beta antagonizes phenobarbital induction of several major cytochromes P450 in adult rat hepatocytes in primary culture. FEBS Lett. 1995 Jun 12;366(2-3):159–164. doi: 10.1016/0014-5793(95)00513-9. [DOI] [PubMed] [Google Scholar]
  3. Abdel-Razzak Z., Loyer P., Fautrel A., Gautier J. C., Corcos L., Turlin B., Beaune P., Guillouzo A. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol. 1993 Oct;44(4):707–715. [PubMed] [Google Scholar]
  4. Aikawa R., Komuro I., Yamazaki T., Zou Y., Kudoh S., Tanaka M., Shiojima I., Hiroi Y., Yazaki Y. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest. 1997 Oct 1;100(7):1813–1821. doi: 10.1172/JCI119709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akamatsu Y., Ohno T., Hirota K., Kagoshima H., Yodoi J., Shigesada K. Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J Biol Chem. 1997 Jun 6;272(23):14497–14500. doi: 10.1074/jbc.272.23.14497. [DOI] [PubMed] [Google Scholar]
  6. Ammendola R., Mesuraca M., Russo T., Cimino F. The DNA-binding efficiency of Sp1 is affected by redox changes. Eur J Biochem. 1994 Oct 1;225(1):483–489. doi: 10.1111/j.1432-1033.1994.t01-1-00483.x. [DOI] [PubMed] [Google Scholar]
  7. Anderson M. T., Staal F. J., Gitler C., Herzenberg L. A., Herzenberg L. A. Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11527–11531. doi: 10.1073/pnas.91.24.11527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ashida H., Ohue K., Kanazawa K., Danno G. Effects of dietary lipid peroxidation products on hormonal responses in primary cultured hepatocytes of rats. Biosci Biotechnol Biochem. 1997 Dec;61(12):2089–2094. doi: 10.1271/bbb.61.2089. [DOI] [PubMed] [Google Scholar]
  9. Austin R. C., Sood S. K., Dorward A. M., Singh G., Shaughnessy S. G., Pamidi S., Outinen P. A., Weitz J. I. Homocysteine-dependent alterations in mitochondrial gene expression, function and structure. Homocysteine and H2O2 act synergistically to enhance mitochondrial damage. J Biol Chem. 1998 Nov 13;273(46):30808–30817. doi: 10.1074/jbc.273.46.30808. [DOI] [PubMed] [Google Scholar]
  10. Bae Y. S., Kang S. W., Seo M. S., Baines I. C., Tekle E., Chock P. B., Rhee S. G. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997 Jan 3;272(1):217–221. [PubMed] [Google Scholar]
  11. Baier-Bitterlich G., Fuchs D., Wachter H. Chronic immune stimulation, oxidative stress, and apoptosis in HIV infection. Biochem Pharmacol. 1997 Mar 21;53(6):755–763. doi: 10.1016/s0006-2952(96)00651-x. [DOI] [PubMed] [Google Scholar]
  12. Bandyopadhyay S., Gronostajski R. M. Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. J Biol Chem. 1994 Nov 25;269(47):29949–29955. [PubMed] [Google Scholar]
  13. Bandyopadhyay S., Starke D. W., Mieyal J. J., Gronostajski R. M. Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J Biol Chem. 1998 Jan 2;273(1):392–397. doi: 10.1074/jbc.273.1.392. [DOI] [PubMed] [Google Scholar]
  14. Barker C. W., Fagan J. B., Pasco D. S. Down-regulation of P4501A1 and P4501A2 mRNA expression in isolated hepatocytes by oxidative stress. J Biol Chem. 1994 Feb 11;269(6):3985–3990. [PubMed] [Google Scholar]
  15. Barker C. W., Fagan J. B., Pasco D. S. Interleukin-1 beta suppresses the induction of P4501A1 and P4501A2 mRNAs in isolated hepatocytes. J Biol Chem. 1992 Apr 25;267(12):8050–8055. [PubMed] [Google Scholar]
  16. Beckman K. B., Ames B. N. Oxidative decay of DNA. J Biol Chem. 1997 Aug 8;272(32):19633–19636. doi: 10.1074/jbc.272.32.19633. [DOI] [PubMed] [Google Scholar]
  17. Beiqing L., Chen M., Whisler R. L. Sublethal levels of oxidative stress stimulate transcriptional activation of c-jun and suppress IL-2 promoter activation in Jurkat T cells. J Immunol. 1996 Jul 1;157(1):160–169. [PubMed] [Google Scholar]
  18. Benhamou P. Y., Moriscot C., Richard M. J., Beatrix O., Badet L., Pattou F., Kerr-Conte J., Chroboczek J., Lemarchand P., Halimi S. Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia. 1998 Sep;41(9):1093–1100. doi: 10.1007/s001250051035. [DOI] [PubMed] [Google Scholar]
  19. Bouton C., Hirling H., Drapier J. C. Redox modulation of iron regulatory proteins by peroxynitrite. J Biol Chem. 1997 Aug 8;272(32):19969–19975. doi: 10.1074/jbc.272.32.19969. [DOI] [PubMed] [Google Scholar]
  20. Bouton C., Oliveira L., Drapier J. C. Converse modulation of IRP1 and IRP2 by immunological stimuli in murine RAW 264.7 macrophages. J Biol Chem. 1998 Apr 17;273(16):9403–9408. doi: 10.1074/jbc.273.16.9403. [DOI] [PubMed] [Google Scholar]
  21. Briggs M. R., Kadonaga J. T., Bell S. P., Tjian R. Purification and biochemical characterization of the promoter-specific transcription factor, Sp1. Science. 1986 Oct 3;234(4772):47–52. doi: 10.1126/science.3529394. [DOI] [PubMed] [Google Scholar]
  22. Buck M., Chojkier M. Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J. 1996 Apr 15;15(8):1753–1765. [PMC free article] [PubMed] [Google Scholar]
  23. Cairo G., Tacchini L., Recalcati S., Azzimonti B., Minotti G., Bernelli-Zazzera A. Effect of reactive oxygen species on iron regulatory protein activity. Ann N Y Acad Sci. 1998 Jun 30;851:179–186. doi: 10.1111/j.1749-6632.1998.tb08992.x. [DOI] [PubMed] [Google Scholar]
  24. Canbolat O., Fandrey J., Jelkmann W. Effects of modulators of the production and degradation of hydrogen peroxide on erythropoietin synthesis. Respir Physiol. 1998 Nov;114(2):175–183. doi: 10.1016/s0034-5687(98)00080-2. [DOI] [PubMed] [Google Scholar]
  25. Cerutti P. A., Trump B. F. Inflammation and oxidative stress in carcinogenesis. Cancer Cells. 1991 Jan;3(1):1–7. [PubMed] [Google Scholar]
  26. Chandel N. S., Maltepe E., Goldwasser E., Mathieu C. E., Simon M. C., Schumacker P. T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11715–11720. doi: 10.1073/pnas.95.20.11715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Chen Q., Cederbaum A. I. Cytotoxicity and apoptosis produced by cytochrome P450 2E1 in Hep G2 cells. Mol Pharmacol. 1998 Apr;53(4):638–648. doi: 10.1124/mol.53.4.638. [DOI] [PubMed] [Google Scholar]
  28. Ching K. Z., Tenney K. A., Chen J., Morgan E. T. Suppression of constitutive cytochrome P450 gene expression by epidermal growth factor receptor ligands in cultured rat hepatocytes. Drug Metab Dispos. 1996 May;24(5):542–546. [PubMed] [Google Scholar]
  29. Claiborne A., Miller H., Parsonage D., Ross R. P. Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J. 1993 Dec;7(15):1483–1490. doi: 10.1096/fasebj.7.15.8262333. [DOI] [PubMed] [Google Scholar]
  30. Clerk A., Fuller S. J., Michael A., Sugden P. H. Stimulation of "stress-regulated" mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem. 1998 Mar 27;273(13):7228–7234. doi: 10.1074/jbc.273.13.7228. [DOI] [PubMed] [Google Scholar]
  31. Corsi M. M., Maes H. H., Wasserman K., Fulgenzi A., Gaja G., Ferrero M. E. Protection by L-2-oxothiazolidine-4-carboxylic acid of hydrogen peroxide-induced CD3zeta and CD16zeta chain down-regulation in human peripheral blood lymphocytes and lymphokine-activated killer cells. Biochem Pharmacol. 1998 Sep 1;56(5):657–662. doi: 10.1016/s0006-2952(98)00085-9. [DOI] [PubMed] [Google Scholar]
  32. Crawford D. R., Abramova N. E., Davies K. J. Oxidative stress causes a general, calcium-dependent degradation of mitochondrial polynucleotides. Free Radic Biol Med. 1998 Dec;25(9):1106–1111. doi: 10.1016/s0891-5849(98)00143-9. [DOI] [PubMed] [Google Scholar]
  33. Crawford D. R., Davies K. J. Adaptive response and oxidative stress. Environ Health Perspect. 1994 Dec;102 (Suppl 10):25–28. doi: 10.1289/ehp.94102s1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Crews S. T. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 1998 Mar 1;12(5):607–620. doi: 10.1101/gad.12.5.607. [DOI] [PubMed] [Google Scholar]
  35. Dalton T. P., Shertzer H. G., Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol. 1999;39:67–101. doi: 10.1146/annurev.pharmtox.39.1.67. [DOI] [PubMed] [Google Scholar]
  36. Davies K. J. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp. 1995;61:1–31. doi: 10.1042/bss0610001. [DOI] [PubMed] [Google Scholar]
  37. Ding H., Demple B. In vivo kinetics of a redox-regulated transcriptional switch. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8445–8449. doi: 10.1073/pnas.94.16.8445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Dröge W., Holm E. Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction. FASEB J. 1997 Nov;11(13):1077–1089. doi: 10.1096/fasebj.11.13.9367343. [DOI] [PubMed] [Google Scholar]
  39. Dröge W., Schulze-Osthoff K., Mihm S., Galter D., Schenk H., Eck H. P., Roth S., Gmünder H. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J. 1994 Nov;8(14):1131–1138. [PubMed] [Google Scholar]
  40. Eisenstein R. S., Blemings K. P. Iron regulatory proteins, iron responsive elements and iron homeostasis. J Nutr. 1998 Dec;128(12):2295–2298. doi: 10.1093/jn/128.12.2295. [DOI] [PubMed] [Google Scholar]
  41. Ema M., Hirota K., Mimura J., Abe H., Yodoi J., Sogawa K., Poellinger L., Fujii-Kuriyama Y. Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 1999 Apr 1;18(7):1905–1914. doi: 10.1093/emboj/18.7.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Esposito F., Cuccovillo F., Morra F., Russo T., Cimino F. DNA binding activity of the glucocorticoid receptor is sensitive to redox changes in intact cells. Biochim Biophys Acta. 1995 Feb 21;1260(3):308–314. doi: 10.1016/0167-4781(94)00209-l. [DOI] [PubMed] [Google Scholar]
  43. Factor V. M., Kiss A., Woitach J. T., Wirth P. J., Thorgeirsson S. S. Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem. 1998 Jun 19;273(25):15846–15853. doi: 10.1074/jbc.273.25.15846. [DOI] [PubMed] [Google Scholar]
  44. Fandrey J., Frede S., Ehleben W., Porwol T., Acker H., Jelkmann W. Cobalt chloride and desferrioxamine antagonize the inhibition of erythropoietin production by reactive oxygen species. Kidney Int. 1997 Feb;51(2):492–496. doi: 10.1038/ki.1997.68. [DOI] [PubMed] [Google Scholar]
  45. Fandrey J., Frede S., Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J. 1994 Oct 15;303(Pt 2):507–510. doi: 10.1042/bj3030507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Fields S., Jang S. K. Presence of a potent transcription activating sequence in the p53 protein. Science. 1990 Aug 31;249(4972):1046–1049. doi: 10.1126/science.2144363. [DOI] [PubMed] [Google Scholar]
  47. Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol. 1998 Apr;10(2):248–253. doi: 10.1016/s0955-0674(98)80147-6. [DOI] [PubMed] [Google Scholar]
  48. Flescher E., Ledbetter J. A., Schieven G. L., Vela-Roch N., Fossum D., Dang H., Ogawa N., Talal N. Longitudinal exposure of human T lymphocytes to weak oxidative stress suppresses transmembrane and nuclear signal transduction. J Immunol. 1994 Dec 1;153(11):4880–4889. [PubMed] [Google Scholar]
  49. Galter D., Mihm S., Dröge W. Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem. 1994 Apr 15;221(2):639–648. doi: 10.1111/j.1432-1033.1994.tb18776.x. [DOI] [PubMed] [Google Scholar]
  50. García-Ruiz C., Colell A., Morales A., Kaplowitz N., Fernández-Checa J. C. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol. 1995 Nov;48(5):825–834. [PubMed] [Google Scholar]
  51. Grimble R. F. Effect of antioxidative vitamins on immune function with clinical applications. Int J Vitam Nutr Res. 1997;67(5):312–320. [PubMed] [Google Scholar]
  52. Guyton K. Z., Xu Q., Holbrook N. J. Induction of the mammalian stress response gene GADD153 by oxidative stress: role of AP-1 element. Biochem J. 1996 Mar 1;314(Pt 2):547–554. doi: 10.1042/bj3140547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hack V., Breitkreutz R., Kinscherf R., Röhrer H., Bärtsch P., Taut F., Benner A., Dröge W. The redox state as a correlate of senescence and wasting and as a target for therapeutic intervention. Blood. 1998 Jul 1;92(1):59–67. [PubMed] [Google Scholar]
  54. Hagen T. M., Ingersoll R. T., Lykkesfeldt J., Liu J., Wehr C. M., Vinarsky V., Bartholomew J. C., Ames A. B. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999 Feb;13(2):411–418. doi: 10.1096/fasebj.13.2.411. [DOI] [PubMed] [Google Scholar]
  55. Hainaut P., Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 1993 Oct 1;53(19):4469–4473. [PubMed] [Google Scholar]
  56. Hamm-Künzelmann B., Schäfer D., Weigert C., Brand K. Redox-regulated expression of glycolytic enzymes in resting and proliferating rat thymocytes. FEBS Lett. 1997 Feb 10;403(1):87–90. doi: 10.1016/s0014-5793(97)00029-x. [DOI] [PubMed] [Google Scholar]
  57. Hampton M. B., Kettle A. J., Winterbourn C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998 Nov 1;92(9):3007–3017. [PubMed] [Google Scholar]
  58. Hayashi S., Hajiro-Nakanishi K., Makino Y., Eguchi H., Yodoi J., Tanaka H. Functional modulation of estrogen receptor by redox state with reference to thioredoxin as a mediator. Nucleic Acids Res. 1997 Oct 15;25(20):4035–4040. doi: 10.1093/nar/25.20.4035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hayes J. D., Ellis E. M., Neal G. E., Harrison D. J., Manson M. M. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. Biochem Soc Symp. 1999;64:141–168. [PubMed] [Google Scholar]
  60. Heinemeyer G., Hildebrandt A. G., Roots I., Lehne L., Nigam S. Demonstration of drug-ethanol interactions by changes in activity of hepatic microsomal oxidase/oxygenase cytochrome P-450 function. Arch Toxicol Suppl. 1979;(2):491–496. doi: 10.1007/978-3-642-67265-1_62. [DOI] [PubMed] [Google Scholar]
  61. Helenius M., Hänninen M., Lehtinen S. K., Salminen A. Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-kappa B. Biochem J. 1996 Sep 1;318(Pt 2):603–608. doi: 10.1042/bj3180603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Henle E. S., Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997 Aug 1;272(31):19095–19098. doi: 10.1074/jbc.272.31.19095. [DOI] [PubMed] [Google Scholar]
  63. Hidalgo E., Leautaud V., Demple B. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator. EMBO J. 1998 May 1;17(9):2629–2636. doi: 10.1093/emboj/17.9.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Hildebrandt A. G., Bergs C., Heinemeyer G., Schlede E., Roots I., Abbas-Ali B., Schmoldt A. Studies on the mechanism of stimulation of microsomal H2O2 formation and benzo(a)pyrene hydroxylation by substrates and flavone. Adv Exp Med Biol. 1981;136(Pt A):179–198. doi: 10.1007/978-1-4757-0674-1_11. [DOI] [PubMed] [Google Scholar]
  65. Hirano F., Tanaka H., Hirano Y., Hiramoto M., Handa H., Makino I., Scheidereit C. Functional interference of Sp1 and NF-kappaB through the same DNA binding site. Mol Cell Biol. 1998 Mar;18(3):1266–1274. doi: 10.1128/mcb.18.3.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hirota K., Matsui M., Iwata S., Nishiyama A., Mori K., Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633–3638. doi: 10.1073/pnas.94.8.3633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hsieh H. J., Cheng C. C., Wu S. T., Chiu J. J., Wung B. S., Wang D. L. Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear-induced c-fos expression. J Cell Physiol. 1998 May;175(2):156–162. doi: 10.1002/(SICI)1097-4652(199805)175:2<156::AID-JCP5>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  68. Huang L. E., Arany Z., Livingston D. M., Bunn H. F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996 Dec 13;271(50):32253–32259. doi: 10.1074/jbc.271.50.32253. [DOI] [PubMed] [Google Scholar]
  69. Huang L. E., Gu J., Schau M., Bunn H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7987–7992. doi: 10.1073/pnas.95.14.7987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Huang R. P., Adamson E. D. Characterization of the DNA-binding properties of the early growth response-1 (Egr-1) transcription factor: evidence for modulation by a redox mechanism. DNA Cell Biol. 1993 Apr;12(3):265–273. doi: 10.1089/dna.1993.12.265. [DOI] [PubMed] [Google Scholar]
  71. Huang R. P., Peng A., Hossain M. Z., Fan Y., Jagdale A., Boynton A. L. Tumor promotion by hydrogen peroxide in rat liver epithelial cells. Carcinogenesis. 1999 Mar;20(3):485–492. doi: 10.1093/carcin/20.3.485. [DOI] [PubMed] [Google Scholar]
  72. Hutchison K. A., Matić G., Meshinchi S., Bresnick E. H., Pratt W. B. Redox manipulation of DNA binding activity and BuGR epitope reactivity of the glucocorticoid receptor. J Biol Chem. 1991 Jun 5;266(16):10505–10509. [PubMed] [Google Scholar]
  73. Iber H., Morgan E. T. Regulation of hepatic cytochrome P450 2C11 by transforming growth factor-beta, hepatocyte growth factor, and interleukin-11. Drug Metab Dispos. 1998 Oct;26(10):1042–1044. [PubMed] [Google Scholar]
  74. Irani K., Xia Y., Zweier J. L., Sollott S. J., Der C. J., Fearon E. R., Sundaresan M., Finkel T., Goldschmidt-Clermont P. J. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997 Mar 14;275(5306):1649–1652. doi: 10.1126/science.275.5306.1649. [DOI] [PubMed] [Google Scholar]
  75. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J. D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76–86. doi: 10.1101/gad.13.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Iyer V. R., Eisen M. B., Ross D. T., Schuler G., Moore T., Lee J. C., Trent J. M., Staudt L. M., Hudson J., Jr, Boguski M. S. The transcriptional program in the response of human fibroblasts to serum. Science. 1999 Jan 1;283(5398):83–87. doi: 10.1126/science.283.5398.83. [DOI] [PubMed] [Google Scholar]
  77. Jayaraman L., Murthy K. G., Zhu C., Curran T., Xanthoudakis S., Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 1997 Mar 1;11(5):558–570. doi: 10.1101/gad.11.5.558. [DOI] [PubMed] [Google Scholar]
  78. Jungermann K., Kietzmann T. Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver. Kidney Int. 1997 Feb;51(2):402–412. doi: 10.1038/ki.1997.53. [DOI] [PubMed] [Google Scholar]
  79. Jørgensen E. C., Autrup H. Autoregulation of human CYP1A1 gene promotor activity in HepG2 and MCF-7 cells. Carcinogenesis. 1996 Mar;17(3):435–441. doi: 10.1093/carcin/17.3.435. [DOI] [PubMed] [Google Scholar]
  80. Kagan V. E., Tyurina Y. Y. Recycling and redox cycling of phenolic antioxidants. Ann N Y Acad Sci. 1998 Nov 20;854:425–434. doi: 10.1111/j.1749-6632.1998.tb09921.x. [DOI] [PubMed] [Google Scholar]
  81. Kietzmann T., Roth U., Freimann S., Jungermann K. Arterial oxygen partial pressures reduce the insulin-dependent induction of the perivenously located glucokinase in rat hepatocyte cultures: mimicry of arterial oxygen pressures by H2O2. Biochem J. 1997 Jan 1;321(Pt 1):17–20. doi: 10.1042/bj3210017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Knoepfel L., Steinkühler C., Carrì M. T., Rotilio G. Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Sp1. Biochem Biophys Res Commun. 1994 Jun 15;201(2):871–877. doi: 10.1006/bbrc.1994.1782. [DOI] [PubMed] [Google Scholar]
  83. Krieger-Brauer H. I., Kather H. The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines. Biochem J. 1995 Apr 15;307(Pt 2):543–548. doi: 10.1042/bj3070543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Kroll S. L., Czyzyk-Krzeska M. F. Role of H2O2 and heme-containing O2 sensors in hypoxic regulation of tyrosine hydroxylase gene expression. Am J Physiol. 1998 Jan;274(1 Pt 1):C167–C174. doi: 10.1152/ajpcell.1998.274.1.C167. [DOI] [PubMed] [Google Scholar]
  85. Kukiełka E., Cederbaum A. I. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron. Arch Biochem Biophys. 1990 Dec;283(2):326–333. doi: 10.1016/0003-9861(90)90650-n. [DOI] [PubMed] [Google Scholar]
  86. Kwak E. L., Larochelle D. A., Beaumont C., Torti S. V., Torti F. M. Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J Biol Chem. 1995 Jun 23;270(25):15285–15293. doi: 10.1074/jbc.270.25.15285. [DOI] [PubMed] [Google Scholar]
  87. Lafon C., Mathieu C., Guerrin M., Pierre O., Vidal S., Valette A. Transforming growth factor beta 1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth Differ. 1996 Aug;7(8):1095–1104. [PubMed] [Google Scholar]
  88. Lander H. M. An essential role for free radicals and derived species in signal transduction. FASEB J. 1997 Feb;11(2):118–124. [PubMed] [Google Scholar]
  89. Lander H. M., Milbank A. J., Tauras J. M., Hajjar D. P., Hempstead B. L., Schwartz G. D., Kraemer R. T., Mirza U. A., Chait B. T., Burk S. C. Redox regulation of cell signalling. Nature. 1996 May 30;381(6581):380–381. doi: 10.1038/381380a0. [DOI] [PubMed] [Google Scholar]
  90. Le Cabec V., Maridonneau-Parini I. Complete and reversible inhibition of NADPH oxidase in human neutrophils by phenylarsine oxide at a step distal to membrane translocation of the enzyme subunits. J Biol Chem. 1995 Feb 3;270(5):2067–2073. doi: 10.1074/jbc.270.5.2067. [DOI] [PubMed] [Google Scholar]
  91. Lee I. M. Antioxidant vitamins in the prevention of cancer. Proc Assoc Am Physicians. 1999 Jan-Feb;111(1):10–15. doi: 10.1046/j.1525-1381.1999.09230.x. [DOI] [PubMed] [Google Scholar]
  92. Lee J. M. Inhibition of p53-dependent apoptosis by the KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene. 1998 Oct 1;17(13):1653–1662. doi: 10.1038/sj.onc.1202102. [DOI] [PubMed] [Google Scholar]
  93. Lee J., Romeo A., Kosman D. J. Transcriptional remodeling and G1 arrest in dioxygen stress in Saccharomyces cerevisiae. J Biol Chem. 1996 Oct 4;271(40):24885–24893. doi: 10.1074/jbc.271.40.24885. [DOI] [PubMed] [Google Scholar]
  94. Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15036–15040. doi: 10.1073/pnas.93.26.15036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Liang X., Lu B., Scott G. K., Chang C. H., Baldwin M. A., Benz C. C. Oxidant stress impaired DNA-binding of estrogen receptor from human breast cancer. Mol Cell Endocrinol. 1998 Nov 25;146(1-2):151–161. doi: 10.1016/s0303-7207(98)00161-0. [DOI] [PubMed] [Google Scholar]
  96. Lickteig K., Lamb K., Brigman K., Rizzino A. Effects of oxidation and reduction on the binding of transcription factors to cis-regulatory elements located in the FGF-4 gene. Mol Reprod Dev. 1996 Jun;44(2):146–152. doi: 10.1002/(SICI)1098-2795(199606)44:2<146::AID-MRD2>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  97. Liu B., Whisler R. L. Transcriptional activation and redox regulation of the tumor necrosis factor-alpha promoter in human T cells: role of the CRE/kappa3 promoter region. J Interferon Cytokine Res. 1998 Nov;18(11):999–1007. doi: 10.1089/jir.1998.18.999. [DOI] [PubMed] [Google Scholar]
  98. Mai B., Breeden L. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol. 1997 Nov;17(11):6491–6501. doi: 10.1128/mcb.17.11.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Makino Y., Okamoto K., Yoshikawa N., Aoshima M., Hirota K., Yodoi J., Umesono K., Makino I., Tanaka H. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest. 1996 Dec 1;98(11):2469–2477. doi: 10.1172/JCI119065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Makino Y., Yoshikawa N., Okamoto K., Hirota K., Yodoi J., Makino I., Tanaka H. Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. J Biol Chem. 1999 Jan 29;274(5):3182–3188. doi: 10.1074/jbc.274.5.3182. [DOI] [PubMed] [Google Scholar]
  101. Matsuoka T., Kajimoto Y., Watada H., Kaneto H., Kishimoto M., Umayahara Y., Fujitani Y., Kamada T., Kawamori R., Yamasaki Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest. 1997 Jan 1;99(1):144–150. doi: 10.1172/JCI119126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Matthews J. R., Wakasugi N., Virelizier J. L., Yodoi J., Hay R. T. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992 Aug 11;20(15):3821–3830. doi: 10.1093/nar/20.15.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Maurice M. M., Nakamura H., van der Voort E. A., van Vliet A. I., Staal F. J., Tak P. P., Breedveld F. C., Verweij C. L. Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol. 1997 Feb 1;158(3):1458–1465. [PubMed] [Google Scholar]
  104. Merad-Boudia M., Nicole A., Santiard-Baron D., Saillé C., Ceballos-Picot I. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Biochem Pharmacol. 1998 Sep 1;56(5):645–655. doi: 10.1016/s0006-2952(97)00647-3. [DOI] [PubMed] [Google Scholar]
  105. Mermod N., O'Neill E. A., Kelly T. J., Tjian R. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell. 1989 Aug 25;58(4):741–753. doi: 10.1016/0092-8674(89)90108-6. [DOI] [PubMed] [Google Scholar]
  106. Meydani M., Lipman R. D., Han S. N., Wu D., Beharka A., Martin K. R., Bronson R., Cao G., Smith D., Meydani S. N. The effect of long-term dietary supplementation with antioxidants. Ann N Y Acad Sci. 1998 Nov 20;854:352–360. doi: 10.1111/j.1749-6632.1998.tb09915.x. [DOI] [PubMed] [Google Scholar]
  107. Michiels C., Remacle J. Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. Eur J Biochem. 1988 Nov 1;177(2):435–441. doi: 10.1111/j.1432-1033.1988.tb14393.x. [DOI] [PubMed] [Google Scholar]
  108. Mitomo K., Nakayama K., Fujimoto K., Sun X., Seki S., Yamamoto K. Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene. 1994 Aug 5;145(2):197–203. doi: 10.1016/0378-1119(94)90005-1. [DOI] [PubMed] [Google Scholar]
  109. Morel Y., Barouki R. Down-regulation of cytochrome P450 1A1 gene promoter by oxidative stress. Critical contribution of nuclear factor 1. J Biol Chem. 1998 Oct 9;273(41):26969–26976. doi: 10.1074/jbc.273.41.26969. [DOI] [PubMed] [Google Scholar]
  110. Morgan E. T. Regulation of cytochromes P450 during inflammation and infection. Drug Metab Rev. 1997 Nov;29(4):1129–1188. doi: 10.3109/03602539709002246. [DOI] [PubMed] [Google Scholar]
  111. Morgan E. T., Sewer M. B., Iber H., Gonzalez F. J., Lee Y. H., Tukey R. H., Okino S., Vu T., Chen Y. H., Sidhu J. S. Physiological and pathophysiological regulation of cytochrome P450. Drug Metab Dispos. 1998 Dec;26(12):1232–1240. [PubMed] [Google Scholar]
  112. Murphy M. P., Packer M. A., Scarlett J. L., Martin S. W. Peroxynitrite: a biologically significant oxidant. Gen Pharmacol. 1998 Aug;31(2):179–186. doi: 10.1016/s0306-3623(97)00418-7. [DOI] [PubMed] [Google Scholar]
  113. Nakshatri H., Bhat-Nakshatri P., Currie R. A. Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem. 1996 Nov 15;271(46):28784–28791. doi: 10.1074/jbc.271.46.28784. [DOI] [PubMed] [Google Scholar]
  114. Neumcke I., Schneider B., Fandrey J., Pagel H. Effects of pro- and antioxidative compounds on renal production of erythropoietin. Endocrinology. 1999 Feb;140(2):641–645. doi: 10.1210/endo.140.2.6529. [DOI] [PubMed] [Google Scholar]
  115. Ng L., Forrest D., Curran T. Differential roles for Fos and Jun in DNA-binding: redox-dependent and independent functions. Nucleic Acids Res. 1993 Dec 25;21(25):5831–5837. doi: 10.1093/nar/21.25.5831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Nikitovic D., Holmgren A., Spyrou G. Inhibition of AP-1 DNA binding by nitric oxide involving conserved cysteine residues in Jun and Fos. Biochem Biophys Res Commun. 1998 Jan 6;242(1):109–112. doi: 10.1006/bbrc.1997.7930. [DOI] [PubMed] [Google Scholar]
  117. Nose K., Ohba M. Functional activation of the egr-1 (early growth response-1) gene by hydrogen peroxide. Biochem J. 1996 Jun 1;316(Pt 2):381–383. doi: 10.1042/bj3160381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. O'Rourke J. F., Tian Y. M., Ratcliffe P. J., Pugh C. W. Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem. 1999 Jan 22;274(4):2060–2071. doi: 10.1074/jbc.274.4.2060. [DOI] [PubMed] [Google Scholar]
  119. Oinonen T., Lindros K. O. Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J. 1998 Jan 1;329(Pt 1):17–35. doi: 10.1042/bj3290017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Okamoto K., Tanaka H., Makino Y., Makino I. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism. Biochem Pharmacol. 1998 Jul 1;56(1):79–86. doi: 10.1016/s0006-2952(98)00121-x. [DOI] [PubMed] [Google Scholar]
  121. Okamoto K., Tanaka H., Ogawa H., Makino Y., Eguchi H., Hayashi S., Yoshikawa N., Poellinger L., Umesono K., Makino I. Redox-dependent regulation of nuclear import of the glucocorticoid receptor. J Biol Chem. 1999 Apr 9;274(15):10363–10371. doi: 10.1074/jbc.274.15.10363. [DOI] [PubMed] [Google Scholar]
  122. Okamoto M., Reddy J. K., Oyasu R. Tumorigenic conversion of a non-tumorigenic rat urothelial cell line by overexpression of H2O2-generating peroxisomal fatty acyl-CoA oxidase. Int J Cancer. 1997 Mar 17;70(6):716–721. doi: 10.1002/(sici)1097-0215(19970317)70:6<716::aid-ijc14>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  123. Okuno H., Akahori A., Sato H., Xanthoudakis S., Curran T., Iba H. Escape from redox regulation enhances the transforming activity of Fos. Oncogene. 1993 Mar;8(3):695–701. [PubMed] [Google Scholar]
  124. Otsuji M., Kimura Y., Aoe T., Okamoto Y., Saito T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13119–13124. doi: 10.1073/pnas.93.23.13119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Paget M. S., Kang J. G., Roe J. H., Buttner M. J. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 1998 Oct 1;17(19):5776–5782. doi: 10.1093/emboj/17.19.5776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Pahl H. L., Baeuerle P. A. The ER-overload response: activation of NF-kappa B. Trends Biochem Sci. 1997 Feb;22(2):63–67. doi: 10.1016/s0968-0004(96)10073-6. [DOI] [PubMed] [Google Scholar]
  127. Pahlavani M. A., Harris M. D. Effect of in vitro generation of oxygen free radicals on T cell function in young and old rats. Free Radic Biol Med. 1998 Nov 15;25(8):903–913. doi: 10.1016/s0891-5849(98)00124-5. [DOI] [PubMed] [Google Scholar]
  128. Pantopoulos K., Mueller S., Atzberger A., Ansorge W., Stremmel W., Hentze M. W. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem. 1997 Apr 11;272(15):9802–9808. doi: 10.1074/jbc.272.15.9802. [DOI] [PubMed] [Google Scholar]
  129. Park J. Y., Shigenaga M. K., Ames B. N. Induction of cytochrome P4501A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin or indolo(3,2-b)carbazole is associated with oxidative DNA damage. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2322–2327. doi: 10.1073/pnas.93.6.2322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Parks D., Bolinger R., Mann K. Redox state regulates binding of p53 to sequence-specific DNA, but not to non-specific or mismatched DNA. Nucleic Acids Res. 1997 Mar 15;25(6):1289–1295. doi: 10.1093/nar/25.6.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Pennisi E. Superoxides relay Ras protein's oncogenic message. Science. 1997 Mar 14;275(5306):1567–1568. doi: 10.1126/science.275.5306.1567. [DOI] [PubMed] [Google Scholar]
  132. Perret A., Pompon D. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms. Biochemistry. 1998 Aug 18;37(33):11412–11424. doi: 10.1021/bi980908q. [DOI] [PubMed] [Google Scholar]
  133. Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J Biol Chem. 1996 Jun 7;271(23):13422–13429. doi: 10.1074/jbc.271.23.13422. [DOI] [PubMed] [Google Scholar]
  134. Pognonec P., Kato H., Roeder R. G. The helix-loop-helix/leucine repeat transcription factor USF can be functionally regulated in a redox-dependent manner. J Biol Chem. 1992 Dec 5;267(34):24563–24567. [PubMed] [Google Scholar]
  135. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  136. Pombo C. M., Bonventre J. V., Molnar A., Kyriakis J., Force T. Activation of a human Ste20-like kinase by oxidant stress defines a novel stress response pathway. EMBO J. 1996 Sep 2;15(17):4537–4546. [PMC free article] [PubMed] [Google Scholar]
  137. Puntarulo S., Cederbaum A. I. Production of reactive oxygen species by microsomes enriched in specific human cytochrome P450 enzymes. Free Radic Biol Med. 1998 May;24(7-8):1324–1330. doi: 10.1016/s0891-5849(97)00463-2. [DOI] [PubMed] [Google Scholar]
  138. Qin J., Clore G. M., Gronenborn A. M. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure. 1994 Jun 15;2(6):503–522. doi: 10.1016/s0969-2126(00)00051-4. [DOI] [PubMed] [Google Scholar]
  139. Quillet-Mary A., Jaffrézou J. P., Mansat V., Bordier C., Naval J., Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997 Aug 22;272(34):21388–21395. doi: 10.1074/jbc.272.34.21388. [DOI] [PubMed] [Google Scholar]
  140. Rainwater R., Parks D., Anderson M. E., Tegtmeyer P., Mann K. Role of cysteine residues in regulation of p53 function. Mol Cell Biol. 1995 Jul;15(7):3892–3903. doi: 10.1128/mcb.15.7.3892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Raju P. A., Herzenberg L. A., Herzenberg L. A., Roederer M. Glutathione precursor and antioxidant activities of N-acetylcysteine and oxothiazolidine carboxylate compared in in vitro studies of HIV replication. AIDS Res Hum Retroviruses. 1994 Aug;10(8):961–967. doi: 10.1089/aid.1994.10.961. [DOI] [PubMed] [Google Scholar]
  142. Ratcliffe P. J., O'Rourke J. F., Maxwell P. H., Pugh C. W. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol. 1998 Apr;201(Pt 8):1153–1162. doi: 10.1242/jeb.201.8.1153. [DOI] [PubMed] [Google Scholar]
  143. Read M. L., Masson M. R., Docherty K. A RIPE3b1-like factor binds to a novel site in the human insulin promoter in a redox-dependent manner. FEBS Lett. 1997 Nov 24;418(1-2):68–72. doi: 10.1016/s0014-5793(97)01352-5. [DOI] [PubMed] [Google Scholar]
  144. Recalcati S., Taramelli D., Conte D., Cairo G. Nitric oxide-mediated induction of ferritin synthesis in J774 macrophages by inflammatory cytokines: role of selective iron regulatory protein-2 downregulation. Blood. 1998 Feb 1;91(3):1059–1066. [PubMed] [Google Scholar]
  145. Royall J. A., Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys. 1993 May;302(2):348–355. doi: 10.1006/abbi.1993.1222. [DOI] [PubMed] [Google Scholar]
  146. Russo T., Zambrano N., Esposito F., Ammendola R., Cimino F., Fiscella M., Jackman J., O'Connor P. M., Anderson C. W., Appella E. A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem. 1995 Dec 8;270(49):29386–29391. doi: 10.1074/jbc.270.49.29386. [DOI] [PubMed] [Google Scholar]
  147. Salceda S., Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997 Sep 5;272(36):22642–22647. doi: 10.1074/jbc.272.36.22642. [DOI] [PubMed] [Google Scholar]
  148. Schenk H., Klein M., Erdbrügger W., Dröge W., Schulze-Osthoff K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1672–1676. doi: 10.1073/pnas.91.5.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Schiaffonati L., Tiberio L. Gene expression in liver after toxic injury: analysis of heat shock response and oxidative stress-inducible genes. Liver. 1997 Aug;17(4):183–191. doi: 10.1111/j.1600-0676.1997.tb00804.x. [DOI] [PubMed] [Google Scholar]
  150. Schoonbroodt S., Legrand-Poels S., Best-Belpomme M., Piette J. Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J. 1997 Feb 1;321(Pt 3):777–785. doi: 10.1042/bj3210777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Schulze-Osthoff K., Beyaert R., Vandevoorde V., Haegeman G., Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 1993 Aug;12(8):3095–3104. doi: 10.1002/j.1460-2075.1993.tb05978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Schwarze S. R., Weindruch R., Aiken J. M. Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med. 1998 Oct;25(6):740–747. doi: 10.1016/s0891-5849(98)00153-1. [DOI] [PubMed] [Google Scholar]
  153. Sen C. K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
  154. Seve M., Favier A., Osman M., Hernandez D., Vaitaitis G., Flores N. C., McCord J. M., Flores S. C. The human immunodeficiency virus-1 Tat protein increases cell proliferation, alters sensitivity to zinc chelator-induced apoptosis, and changes Sp1 DNA binding in HeLa cells. Arch Biochem Biophys. 1999 Jan 15;361(2):165–172. doi: 10.1006/abbi.1998.0942. [DOI] [PubMed] [Google Scholar]
  155. Sewer M. B., Morgan E. T. Down-regulation of the expression of three major rat liver cytochrome P450S by endotoxin in vivo occurs independently of nitric oxide production. J Pharmacol Exp Ther. 1998 Oct;287(1):352–358. [PubMed] [Google Scholar]
  156. Siems W. G., Capuozzo E., Verginelli D., Salerno C., Crifò C., Grune T. Inhibition of NADPH oxidase-mediated superoxide radical formation in PMA-stimulated human neutrophils by 4-hydroxynonenal--binding to -SH and -NH2 groups. Free Radic Res. 1997 Oct;27(4):353–358. doi: 10.3109/10715769709065774. [DOI] [PubMed] [Google Scholar]
  157. Sies H., Stahl W., Sundquist A. R. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci. 1992 Sep 30;669:7–20. doi: 10.1111/j.1749-6632.1992.tb17085.x. [DOI] [PubMed] [Google Scholar]
  158. Silva C. M., Cidlowski J. A. Direct evidence for intra- and intermolecular disulfide bond formation in the human glucocorticoid receptor. Inhibition of DNA binding and identification of a new receptor-associated protein. J Biol Chem. 1989 Apr 25;264(12):6638–6647. [PubMed] [Google Scholar]
  159. Slater A. F., Stefan C., Nobel I., van den Dobbelsteen D. J., Orrenius S. Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett. 1995 Dec;82-83:149–153. doi: 10.1016/0378-4274(95)03474-9. [DOI] [PubMed] [Google Scholar]
  160. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Srinivas V., Zhu X., Salceda S., Nakamura R., Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) is a non-heme iron protein. Implications for oxygen sensing. J Biol Chem. 1998 Jul 17;273(29):18019–18022. doi: 10.1074/jbc.273.29.18019. [DOI] [PubMed] [Google Scholar]
  162. Starovasnik M. A., Blackwell T. K., Laue T. M., Weintraub H., Klevit R. E. Folding topology of the disulfide-bonded dimeric DNA-binding domain of the myogenic determination factor MyoD. Biochemistry. 1992 Oct 20;31(41):9891–9903. doi: 10.1021/bi00156a006. [DOI] [PubMed] [Google Scholar]
  163. Sun Y., Oberley L. W. Redox regulation of transcriptional activators. Free Radic Biol Med. 1996;21(3):335–348. doi: 10.1016/0891-5849(96)00109-8. [DOI] [PubMed] [Google Scholar]
  164. Susin S. A., Zamzami N., Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):151–165. doi: 10.1016/s0005-2728(98)00110-8. [DOI] [PubMed] [Google Scholar]
  165. Sutherland C., Tebbey P. W., Granner D. K. Oxidative and chemical stress mimic insulin by selectively inhibiting the expression of phosphoenolpyruvate carboxykinase in hepatoma cells. Diabetes. 1997 Jan;46(1):17–22. doi: 10.2337/diab.46.1.17. [DOI] [PubMed] [Google Scholar]
  166. Suzuki Y. J., Forman H. J., Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22(1-2):269–285. doi: 10.1016/s0891-5849(96)00275-4. [DOI] [PubMed] [Google Scholar]
  167. Taddei F., Hayakawa H., Bouton M., Cirinesi A., Matic I., Sekiguchi M., Radman M. Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science. 1997 Oct 3;278(5335):128–130. doi: 10.1126/science.278.5335.128. [DOI] [PubMed] [Google Scholar]
  168. Tell G., Scaloni A., Pellizzari L., Formisano S., Pucillo C., Damante G. Redox potential controls the structure and DNA binding activity of the paired domain. J Biol Chem. 1998 Sep 25;273(39):25062–25072. doi: 10.1074/jbc.273.39.25062. [DOI] [PubMed] [Google Scholar]
  169. Torti S. V., Akimoto H., Lin K., Billingham M. E., Torti F. M. Selective inhibition of muscle gene expression by oxidative stress in cardiac cells. J Mol Cell Cardiol. 1998 Jun;30(6):1173–1180. doi: 10.1006/jmcc.1998.0681. [DOI] [PubMed] [Google Scholar]
  170. Toyokuni S., Okamoto K., Yodoi J., Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995 Jan 16;358(1):1–3. doi: 10.1016/0014-5793(94)01368-b. [DOI] [PubMed] [Google Scholar]
  171. Ushio-Fukai M., Alexander R. W., Akers M., Griendling K. K. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998 Jun 12;273(24):15022–15029. doi: 10.1074/jbc.273.24.15022. [DOI] [PubMed] [Google Scholar]
  172. Verhaegh G. W., Richard M. J., Hainaut P. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol Cell Biol. 1997 Oct;17(10):5699–5706. doi: 10.1128/mcb.17.10.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Verhasselt V., Goldman M., Willems F. Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur J Immunol. 1998 Nov;28(11):3886–3890. doi: 10.1002/(SICI)1521-4141(199811)28:11<3886::AID-IMMU3886>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  174. Vogt T. M., Welsh J., Stolz W., Kullmann F., Jung B., Landthaler M., McClelland M. RNA fingerprinting displays UVB-specific disruption of transcriptional control in human melanocytes. Cancer Res. 1997 Aug 15;57(16):3554–3561. [PubMed] [Google Scholar]
  175. Walker L. J., Robson C. N., Black E., Gillespie D., Hickson I. D. Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol. 1993 Sep;13(9):5370–5376. doi: 10.1128/mcb.13.9.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Walsh A. C., Michaud S. G., Malossi J. A., Lawrence D. A. Glutathione depletion in human T lymphocytes: analysis of activation-associated gene expression and the stress response. Toxicol Appl Pharmacol. 1995 Aug;133(2):249–261. doi: 10.1006/taap.1995.1149. [DOI] [PubMed] [Google Scholar]
  177. Wang X., Martindale J. L., Liu Y., Holbrook N. J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J. 1998 Jul 15;333(Pt 2):291–300. doi: 10.1042/bj3330291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Weiss G., Bogdan C., Hentze M. W. Pathways for the regulation of macrophage iron metabolism by the anti-inflammatory cytokines IL-4 and IL-13. J Immunol. 1997 Jan 1;158(1):420–425. [PubMed] [Google Scholar]
  179. Weiss G., Houston T., Kastner S., Jöhrer K., Grünewald K., Brock J. H. Regulation of cellular iron metabolism by erythropoietin: activation of iron-regulatory protein and upregulation of transferrin receptor expression in erythroid cells. Blood. 1997 Jan 15;89(2):680–687. [PubMed] [Google Scholar]
  180. Whisler R. L., Beiqing L., Chen M. Age-related decreases in IL-2 production by human T cells are associated with impaired activation of nuclear transcriptional factors AP-1 and NF-AT. Cell Immunol. 1996 May 1;169(2):185–195. doi: 10.1006/cimm.1996.0109. [DOI] [PubMed] [Google Scholar]
  181. Wiese A. G., Pacifici R. E., Davies K. J. Transient adaptation of oxidative stress in mammalian cells. Arch Biochem Biophys. 1995 Apr 1;318(1):231–240. doi: 10.1006/abbi.1995.1225. [DOI] [PubMed] [Google Scholar]
  182. Wilhelm D., Bender K., Knebel A., Angel P. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol Cell Biol. 1997 Aug;17(8):4792–4800. doi: 10.1128/mcb.17.8.4792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Woo E. S., Lazo J. S. Nucleocytoplasmic functionality of metallothionein. Cancer Res. 1997 Oct 1;57(19):4236–4241. [PubMed] [Google Scholar]
  184. Wu H. H., Momand J. Pyrrolidine dithiocarbamate prevents p53 activation and promotes p53 cysteine residue oxidation. J Biol Chem. 1998 Jul 24;273(30):18898–18905. doi: 10.1074/jbc.273.30.18898. [DOI] [PubMed] [Google Scholar]
  185. Wu X., Bishopric N. H., Discher D. J., Murphy B. J., Webster K. A. Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol Cell Biol. 1996 Mar;16(3):1035–1046. doi: 10.1128/mcb.16.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Xanthoudakis S., Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 1992 Feb;11(2):653–665. doi: 10.1002/j.1460-2075.1992.tb05097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Xanthoudakis S., Miao G., Wang F., Pan Y. C., Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992 Sep;11(9):3323–3335. doi: 10.1002/j.1460-2075.1992.tb05411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Xu C., Pasco D. S. Suppression of CYP1A1 transcription by H2O2 is mediated by xenobiotic-response element. Arch Biochem Biophys. 1998 Aug 15;356(2):142–150. doi: 10.1006/abbi.1998.0770. [DOI] [PubMed] [Google Scholar]
  189. Zheng M., Aslund F., Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science. 1998 Mar 13;279(5357):1718–1721. doi: 10.1126/science.279.5357.1718. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES