Abstract
CTP:phosphoethanolamine cytidylyltransferase (ET) is a key regulatory enzyme in the CDP-ethanolamine pathway for phosphatidylethanolamine synthesis. As a first step in the elucidation of the structure-function relationship and the regulation of ET, an ET cDNA was cloned from rat liver. The cloned cDNA encodes a protein of 404 amino acid residues with a calculated molecular mass of 45.2 kDa. The deduced amino acid sequence is very similar to that of human ET (89% identity). Furthermore, it shows less, but significant, similarity to yeast ET as well as to other cytidylyltransferases, including rat CTP:phosphocholine cytidylyltransferase and Bacillus subtilis glycerol-3-phosphate cytidylyltransferase. Like human and yeast ET, rat ET has a large repetitive internal sequence in the N- and C-terminal halves of the protein. Both parts of the repeat contain the HXGH motif, the most conserved region in the N-terminal active domain of other cytidylyltransferases, indicating the existence of two catalytic domains in ET. The hydropathy profile revealed that rat ET is largely hydrophilic and lacks a hydrophobic stretch long enough to span a bilayer membrane. There was no prediction for an amphipathic alpha-helix. Transfection of COS cells with the cDNA clone resulted in an 11-fold increase in ET activity, corresponding to an increase in the amount of ET protein as detected on a Western blot. Determination of the ET activity during liver development showed a 2. 5-fold increase between day 17 of gestation and birth (day 22) and the amount of ET protein changed accordingly. Northern blot analysis showed that this was accompanied by an increase in the amount of ET mRNA. Between day 17 of gestation and birth, the amount of mRNA in fetal rat liver increased approx. 6-fold, suggesting the regulation of ET at both pretranslational and post-translational levels during rat liver development.
Full Text
The Full Text of this article is available as a PDF (277.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur G., Page L. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver. Biochem J. 1991 Jan 1;273(Pt 1):121–125. doi: 10.1042/bj2730121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bladergroen B. A., Geelen M. J., Reddy A. C., Declercq P. E., Van Golde L. M. Channelling of intermediates in the biosynthesis of phosphatidylcholine and phosphatidylethanolamine in mammalian cells. Biochem J. 1998 Sep 15;334(Pt 3):511–517. doi: 10.1042/bj3340511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bork P., Holm L., Koonin E. V., Sander C. The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Proteins. 1995 Jul;22(3):259–266. doi: 10.1002/prot.340220306. [DOI] [PubMed] [Google Scholar]
- Choi S. B., Lee K. W., Cho S. H. Cloning of CTP:phosphocholine cytidylyltransferase cDNA from Arabidopsis thaliana. Mol Cells. 1997 Feb 28;7(1):58–63. [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- Cornell R. B., Kalmar G. B., Kay R. J., Johnson M. A., Sanghera J. S., Pelech S. L. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Biochem J. 1995 Sep 1;310(Pt 2):699–708. doi: 10.1042/bj3100699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig L., Johnson J. E., Cornell R. B. Identification of the membrane-binding domain of rat liver CTP:phosphocholine cytidylyltransferase using chymotrypsin proteolysis. J Biol Chem. 1994 Feb 4;269(5):3311–3317. [PubMed] [Google Scholar]
- Cui Z., Shen Y. J., Vance D. E. Inverse correlation between expression of phosphatidylethanolamine N-methyltransferase-2 and growth rate of perinatal rat livers. Biochim Biophys Acta. 1997 May 17;1346(1):10–16. doi: 10.1016/s0005-2760(97)00012-x. [DOI] [PubMed] [Google Scholar]
- Delarue M., Moras D. The aminoacyl-tRNA synthetase family: modules at work. Bioessays. 1993 Oct;15(10):675–687. doi: 10.1002/bies.950151007. [DOI] [PubMed] [Google Scholar]
- Haber B., Naji L., Cressman D., Taub R. Coexpression of liver-specific and growth-induced genes in perinatal and regenerating liver: attainment and maintenance of the differentiated state during rapid proliferation. Hepatology. 1995 Sep;22(3):906–914. [PubMed] [Google Scholar]
- Hogan M., Kuliszewski M., Lee W., Post M. Regulation of phosphatidylcholine synthesis in maturing type II cells: increased mRNA stability of CTP:phosphocholine cytidylyltransferase. Biochem J. 1996 Mar 15;314(Pt 3):799–803. doi: 10.1042/bj3140799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houweling M., Tijburg L. B., Vaartjes W. J., Batenburg J. J., Kalmar G. B., Cornell R. B., Van Golde L. M. Evidence that CTP:choline-phosphate cytidylyltransferase is regulated at a pretranslational level in rat liver after partial hepatectomy. Eur J Biochem. 1993 Jun 15;214(3):927–933. doi: 10.1111/j.1432-1033.1993.tb17996.x. [DOI] [PubMed] [Google Scholar]
- Kalmar G. B., Kay R. J., LaChance A. C., Cornell R. B. Primary structure and expression of a human CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta. 1994 Oct 18;1219(2):328–334. doi: 10.1016/0167-4781(94)90056-6. [DOI] [PubMed] [Google Scholar]
- Kalmar G. B., Kay R. J., Lachance A., Aebersold R., Cornell R. B. Cloning and expression of rat liver CTP: phosphocholine cytidylyltransferase: an amphipathic protein that controls phosphatidylcholine synthesis. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6029–6033. doi: 10.1073/pnas.87.16.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem. 1995;64:315–343. doi: 10.1146/annurev.bi.64.070195.001531. [DOI] [PubMed] [Google Scholar]
- Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Min-Seok R., Kawamata Y., Nakamura H., Ohta A., Takagi M. Isolation and characterization of ECT1 gene encoding CTP: phosphoethanolamine cytidylyltransferase of Saccharomyces cerevisiae. J Biochem. 1996 Nov;120(5):1040–1047. doi: 10.1093/oxfordjournals.jbchem.a021497. [DOI] [PubMed] [Google Scholar]
- Nakashima A., Hosaka K., Nikawa J. Cloning of a human cDNA for CTP-phosphoethanolamine cytidylyltransferase by complementation in vivo of a yeast mutant. J Biol Chem. 1997 Apr 4;272(14):9567–9572. doi: 10.1074/jbc.272.14.9567. [DOI] [PubMed] [Google Scholar]
- Park Y. S., Gee P., Sanker S., Schurter E. J., Zuiderweg E. R., Kent C. Identification of functional conserved residues of CTP:glycerol-3-phosphate cytidylyltransferase. Role of histidines in the conserved HXGH in catalysis. J Biol Chem. 1997 Jun 13;272(24):15161–15166. doi: 10.1074/jbc.272.24.15161. [DOI] [PubMed] [Google Scholar]
- Rusconi S., Severne Y., Georgiev O., Galli I., Wieland S. A novel expression assay to study transcriptional activators. Gene. 1990 May 14;89(2):211–221. doi: 10.1016/0378-1119(90)90008-f. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundler R. Ethanolaminephosphate cytidylyltransferase. Purification and characterization of the enzyme from rat liver. J Biol Chem. 1975 Nov 25;250(22):8585–8590. [PubMed] [Google Scholar]
- Tessner T. G., Rock C. O., Kalmar G. B., Cornell R. B., Jackowski S. Colony-stimulating factor 1 regulates CTP: phosphocholine cytidylyltransferase mRNA levels. J Biol Chem. 1991 Sep 5;266(25):16261–16264. [PubMed] [Google Scholar]
- Tijburg L. B., Geelen M. J., Van Golde L. M. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem Biophys Res Commun. 1989 May 15;160(3):1275–1280. doi: 10.1016/s0006-291x(89)80141-x. [DOI] [PubMed] [Google Scholar]
- Tijburg L. B., Vermeulen P. S., van Golde L. M. Ethanolamine-phosphate cytidylyltransferase. Methods Enzymol. 1992;209:258–263. doi: 10.1016/0076-6879(92)09032-x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
- Tsukagoshi Y., Nikawa J., Yamashita S. Molecular cloning and characterization of the gene encoding cholinephosphate cytidylyltransferase in Saccharomyces cerevisiae. Eur J Biochem. 1987 Dec 15;169(3):477–486. doi: 10.1111/j.1432-1033.1987.tb13635.x. [DOI] [PubMed] [Google Scholar]
- Veitch D. P., Cornell R. B. Substitution of serine for glycine-91 in the HXGH motif of CTP:phosphocholine cytidylyltransferase implicates this motif in CTP binding. Biochemistry. 1996 Aug 20;35(33):10743–10750. doi: 10.1021/bi960402c. [DOI] [PubMed] [Google Scholar]
- Vermeulen P. S., Geelen M. J., van Golde L. M. Substrate specificity of CTP: phosphoethanolamine cytidylyltransferase purified from rat liver. Biochim Biophys Acta. 1994 Mar 24;1211(3):343–349. doi: 10.1016/0005-2760(94)90159-7. [DOI] [PubMed] [Google Scholar]
- Vermeulen P. S., Tijburg L. B., Geelen M. J., van Golde L. M. Immunological characterization, lipid dependence, and subcellular localization of CTP:phosphoethanolamine cytidylyltransferase purified from rat liver. Comparison with CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1993 Apr 5;268(10):7458–7464. [PubMed] [Google Scholar]
- Wang Y., Kent C. Effects of altered phosphorylation sites on the properties of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Jul 28;270(30):17843–17849. doi: 10.1074/jbc.270.30.17843. [DOI] [PubMed] [Google Scholar]
- Yang W., Jackowski S. Lipid activation of CTP:phosphocholine cytidylyltransferase is regulated by the phosphorylated carboxyl-terminal domain. J Biol Chem. 1995 Jul 14;270(28):16503–16506. doi: 10.1074/jbc.270.28.16503. [DOI] [PubMed] [Google Scholar]
- Yeo H. J., Sri Widada J., Mercereau-Puijalon O., Vial H. J. Molecular cloning of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. Eur J Biochem. 1995 Oct 1;233(1):62–72. doi: 10.1111/j.1432-1033.1995.062_1.x. [DOI] [PubMed] [Google Scholar]
- van Hellemond J. J., Slot J. W., Geelen M. J., van Golde L. M., Vermeulen P. S. Ultrastructural localization of CTP:phosphoethanolamine cytidylyltransferase in rat liver. J Biol Chem. 1994 Jun 3;269(22):15415–15418. [PubMed] [Google Scholar]