Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1999 Oct 15;343(Pt 2):461–466.

Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin.

E Mizukoshi 1, M Suzuki 1, A Loupatov 1, T Uruno 1, H Hayashi 1, T Misono 1, S C Kaul 1, R Wadhwa 1, T Imamura 1
PMCID: PMC1220575  PMID: 10510314

Abstract

Fibroblast growth factor-1 (FGF-1), which lacks a signal peptide and is intracellularly localized as a result of endogenous expression or endocytosis, is thought to be involved in regulating cell growth and differentiation. In the study reported here, we purified proteins that bind intracellular FGF-1. Affinity adsorption was used to purify FGF-1-binding proteins from rat L6 cells expressing FGF-1. One of the isolated proteins was identified as the glucose-regulated protein GRP75/mortalin/PBP-74/mthsp70, a member of the hsp70 family of heat-shock proteins known to be involved in regulating glucose responses, antigen processing and cell mortality. The interaction of FGF-1 and GRP75/mortalin in vivo was confirmed by co-immunoprecipitation, immunohistochemical co-localization in Rat-1 fibroblasts and by using the yeast two-hybrid system. Moreover, a binding assay in vitro with the use of recombinant FGF-1 and mortalin demonstrated a direct physical interaction between the two proteins. These results reveal that GRP75/mortalin is an intracellular FGF-1-binding protein in cells and suggest that GRP75/mortalin is involved in the trafficking of and/or signalling by FGF-1.

Full Text

The Full Text of this article is available as a PDF (211.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoine M., Reimers K., Dickson C., Kiefer P. Fibroblast growth factor 3, a protein with dual subcellular localization, is targeted to the nucleus and nucleolus by the concerted action of two nuclear localization signals and a nucleolar retention signal. J Biol Chem. 1997 Nov 21;272(47):29475–29481. doi: 10.1074/jbc.272.47.29475. [DOI] [PubMed] [Google Scholar]
  2. Baird A., Klagsbrun M. The fibroblast growth factor family. Cancer Cells. 1991 Jun;3(6):239–243. [PubMed] [Google Scholar]
  3. Bhattacharyya T., Karnezis A. N., Murphy S. P., Hoang T., Freeman B. C., Phillips B., Morimoto R. I. Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem. 1995 Jan 27;270(4):1705–1710. doi: 10.1074/jbc.270.4.1705. [DOI] [PubMed] [Google Scholar]
  4. Bonnet H., Filhol O., Truchet I., Brethenou P., Cochet C., Amalric F., Bouche G. Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem. 1996 Oct 4;271(40):24781–24787. doi: 10.1074/jbc.271.40.24781. [DOI] [PubMed] [Google Scholar]
  5. Domanico S. Z., DeNagel D. C., Dahlseid J. N., Green J. M., Pierce S. K. Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol Cell Biol. 1993 Jun;13(6):3598–3610. doi: 10.1128/mcb.13.6.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Emoto H., Tagashira S., Mattei M. G., Yamasaki M., Hashimoto G., Katsumata T., Negoro T., Nakatsuka M., Birnbaum D., Coulier F. Structure and expression of human fibroblast growth factor-10. J Biol Chem. 1997 Sep 12;272(37):23191–23194. doi: 10.1074/jbc.272.37.23191. [DOI] [PubMed] [Google Scholar]
  7. Fay F. S., Carrington W., Fogarty K. E. Three-dimensional molecular distribution in single cells analysed using the digital imaging microscope. J Microsc. 1989 Feb;153(Pt 2):133–149. [PubMed] [Google Scholar]
  8. Görlich D., Vogel F., Mills A. D., Hartmann E., Laskey R. A. Distinct functions for the two importin subunits in nuclear protein import. Nature. 1995 Sep 21;377(6546):246–248. doi: 10.1038/377246a0. [DOI] [PubMed] [Google Scholar]
  9. Imamura T., Engleka K., Zhan X., Tokita Y., Forough R., Roeder D., Jackson A., Maier J. A., Hla T., Maciag T. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science. 1990 Sep 28;249(4976):1567–1570. doi: 10.1126/science.1699274. [DOI] [PubMed] [Google Scholar]
  10. Imamura T., Oka S., Tanahashi T., Okita Y. Cell cycle-dependent nuclear localization of exogenously added fibroblast growth factor-1 in BALB/c 3T3 and human vascular endothelial cells. Exp Cell Res. 1994 Dec;215(2):363–372. doi: 10.1006/excr.1994.1353. [DOI] [PubMed] [Google Scholar]
  11. Imamura T., Tokita Y., Mitsui Y. Identification of a heparin-binding growth factor-1 nuclear translocation sequence by deletion mutation analysis. J Biol Chem. 1992 Mar 15;267(8):5676–5679. [PubMed] [Google Scholar]
  12. Imamura T., Tokita Y., Mitsui Y. Purification of basic FGF receptors from rat brain. Biochem Biophys Res Commun. 1988 Sep 15;155(2):583–590. doi: 10.1016/s0006-291x(88)80534-5. [DOI] [PubMed] [Google Scholar]
  13. Jackson A., Friedman S., Zhan X., Engleka K. A., Forough R., Maciag T. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10691–10695. doi: 10.1073/pnas.89.22.10691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jaye M., Schlessinger J., Dionne C. A. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim Biophys Acta. 1992 Jun 10;1135(2):185–199. doi: 10.1016/0167-4889(92)90136-y. [DOI] [PubMed] [Google Scholar]
  15. Jenö P., Mini T., Moes S., Hintermann E., Horst M. Internal sequences from proteins digested in polyacrylamide gels. Anal Biochem. 1995 Jan 1;224(1):75–82. doi: 10.1006/abio.1995.1010. [DOI] [PubMed] [Google Scholar]
  16. Kiefer P., Acland P., Pappin D., Peters G., Dickson C. Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3. EMBO J. 1994 Sep 1;13(17):4126–4136. doi: 10.1002/j.1460-2075.1994.tb06730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimura Y., Yahara I., Lindquist S. Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science. 1995 Jun 2;268(5215):1362–1365. doi: 10.1126/science.7761857. [DOI] [PubMed] [Google Scholar]
  18. Klagsbrun M., Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell. 1991 Oct 18;67(2):229–231. doi: 10.1016/0092-8674(91)90173-v. [DOI] [PubMed] [Google Scholar]
  19. Kolpakova E., Wiedłocha A., Stenmark H., Klingenberg O., Falnes P. O., Olsnes S. Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor. Biochem J. 1998 Nov 15;336(Pt 1):213–222. doi: 10.1042/bj3360213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Komi A., Suzuki M., Imamura T. Permeable FGF-1 nuclear localization signal peptide stimulates DNA synthesis in various cell types but is cell-density sensitive and unable to support cell proliferation. Exp Cell Res. 1998 Sep 15;243(2):408–414. doi: 10.1006/excr.1998.4176. [DOI] [PubMed] [Google Scholar]
  21. Lin Y. Z., Yao S. Y., Hawiger J. Role of the nuclear localization sequence in fibroblast growth factor-1-stimulated mitogenic pathways. J Biol Chem. 1996 Mar 8;271(10):5305–5308. doi: 10.1074/jbc.271.10.5305. [DOI] [PubMed] [Google Scholar]
  22. Martin J., Hartl F. U. Chaperone-assisted protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):41–52. doi: 10.1016/s0959-440x(97)80006-1. [DOI] [PubMed] [Google Scholar]
  23. Mason I. J. The ins and outs of fibroblast growth factors. Cell. 1994 Aug 26;78(4):547–552. doi: 10.1016/0092-8674(94)90520-7. [DOI] [PubMed] [Google Scholar]
  24. Massa S. M., Longo F. M., Zuo J., Wang S., Chen J., Sharp F. R. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res. 1995 Apr 15;40(6):807–819. doi: 10.1002/jnr.490400612. [DOI] [PubMed] [Google Scholar]
  25. Mouta Carreira C., LaVallee T. M., Tarantini F., Jackson A., Lathrop J. T., Hampton B., Burgess W. H., Maciag T. S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro. J Biol Chem. 1998 Aug 28;273(35):22224–22231. doi: 10.1074/jbc.273.35.22224. [DOI] [PubMed] [Google Scholar]
  26. Quarto N., Finger F. P., Rifkin D. B. The NH2-terminal extension of high molecular weight bFGF is a nuclear targeting signal. J Cell Physiol. 1991 May;147(2):311–318. doi: 10.1002/jcp.1041470217. [DOI] [PubMed] [Google Scholar]
  27. Rutherford S. L., Zuker C. S. Protein folding and the regulation of signaling pathways. Cell. 1994 Dec 30;79(7):1129–1132. doi: 10.1016/0092-8674(94)90003-5. [DOI] [PubMed] [Google Scholar]
  28. Shi J., Friedman S., Maciag T. A carboxyl-terminal domain in fibroblast growth factor (FGF)-2 inhibits FGF-1 release in response to heat shock in vitro. J Biol Chem. 1997 Jan 10;272(2):1142–1147. doi: 10.1074/jbc.272.2.1142. [DOI] [PubMed] [Google Scholar]
  29. Shin J. T., Opalenik S. R., Wehby J. N., Mahesh V. K., Jackson A., Tarantini F., Maciag T., Thompson J. A. Serum-starvation induces the extracellular appearance of FGF-1. Biochim Biophys Acta. 1996 Jun 5;1312(1):27–38. doi: 10.1016/0167-4889(96)00013-4. [DOI] [PubMed] [Google Scholar]
  30. Smallwood P. M., Munoz-Sanjuan I., Tong P., Macke J. P., Hendry S. H., Gilbert D. J., Copeland N. G., Jenkins N. A., Nathans J. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9850–9857. doi: 10.1073/pnas.93.18.9850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tarantini F., LaVallee T., Jackson A., Gamble S., Mouta Carreira C., Garfinkel S., Burgess W. H., Maciag T. The extravesicular domain of synaptotagmin-1 is released with the latent fibroblast growth factor-1 homodimer in response to heat shock. J Biol Chem. 1998 Aug 28;273(35):22209–22216. doi: 10.1074/jbc.273.35.22209. [DOI] [PubMed] [Google Scholar]
  32. Wadhwa R., Kaul S. C., Ikawa Y., Sugimoto Y. Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem. 1993 Mar 25;268(9):6615–6621. [PubMed] [Google Scholar]
  33. Wadhwa R., Kaul S. C., Sugimoto Y., Mitsui Y. Induction of cellular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 cells. J Biol Chem. 1993 Oct 25;268(30):22239–22242. [PubMed] [Google Scholar]
  34. Wartmann M., Davis R. J. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem. 1994 Mar 4;269(9):6695–6701. [PubMed] [Google Scholar]
  35. Wiedłocha A., Falnes P. O., Madshus I. H., Sandvig K., Olsnes S. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell. 1994 Mar 25;76(6):1039–1051. doi: 10.1016/0092-8674(94)90381-6. [DOI] [PubMed] [Google Scholar]
  36. Wiedłocha A., Falnes P. O., Rapak A., Muñoz R., Klingenberg O., Olsnes S. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization. Mol Cell Biol. 1996 Jan;16(1):270–280. doi: 10.1128/mcb.16.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhan X., Hu X., Friedman S., Maciag T. Analysis of endogenous and exogenous nuclear translocation of fibroblast growth factor-1 in NIH 3T3 cells. Biochem Biophys Res Commun. 1992 Nov 16;188(3):982–991. doi: 10.1016/0006-291x(92)91328-n. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES