Abstract
There are three subtypes of mammalian Ins(1,4,5)P(3) (InsP(3)) receptor, each of which forms an intracellular Ca(2+) channel. Biphasic regulation of InsP(3) receptors by cytosolic Ca(2+) is well documented in cells expressing predominantly type 1 or type 2 InsP(3) receptors and might contribute to the regenerative recruitment of Ca(2+) release events and to limiting their duration in intact cells. The properties of type 3 receptors are less clear. Bilayer recording from InsP(3) receptors of RIN-5F cells, cells in which the InsP(3) receptors are likely to be largely type 3, recently suggested that the receptors are not inhibited by Ca(2+) [Hagar, Burgstahler, Nathanson and Ehrlich (1998) Nature (London) 296, 81-84]. By using antipeptide antisera that either selectively recognized each InsP(3) receptor subtype or interacted equally well with all subtypes, together with membranes from Spodoptera frugiperda (Sf9) cells expressing only single receptor subtypes to calibrate the immunoblotting, we quantified the relative levels of expression of type 1 (17%) and type 3 (77%) InsP(3) receptors in RINm5F cells. In unidirectional (45)Ca(2+) efflux experiments from permeabilized RINm5F cells, submaximal concentrations of InsP(3) released only a fraction of the InsP(3)-sensitive Ca(2+) stores, indicating that responses to InsP(3) are quantal. Increasing the cytosolic free [Ca(2+)] ([Ca(2+)](i)) from approx. 4 to 186 nM increased the sensitivity of the Ca(2+) stores to InsP(3): the EC(50) decreased from 281+/-15 to 82+/-2 nM. Further increases in [Ca(2+)](i) massively decreased the sensitivity of the stores to InsP(3), by almost 10-fold when [Ca(2+)](i) was 2.4 microM, and by more than 3000-fold when it was 100 microM. The inhibition caused by 100 microM Ca(2+) was fully reversed within 60 s of the restoration of [Ca(2+)](i) to 186 nM. The effect of submaximal InsP(3) concentrations on Ca(2+) mobilization from permeabilized RINm5F cells is therefore biphasically regulated by cytosolic Ca(2+). We conclude that type 3 InsP(3) receptors of RINm5F cells mediate quantal Ca(2+) release and they are biphasically regulated by cytosolic Ca(2+), either because a single type 1 subunit within the tetrameric receptor confers the Ca(2+) inhibition or because the type 3 subtype is itself directly inhibited by Ca(2+).
Full Text
The Full Text of this article is available as a PDF (150.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beecroft M. D., Taylor C. W. Incremental Ca2+ mobilization by inositol trisphosphate receptors is unlikely to be mediated by their desensitization or regulation by luminal or cytosolic Ca2+. Biochem J. 1997 Aug 15;326(Pt 1):215–220. doi: 10.1042/bj3260215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Elementary and global aspects of calcium signalling. J Physiol. 1997 Mar 1;499(Pt 2):291–306. doi: 10.1113/jphysiol.1997.sp021927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bootman M. Intracellular calcium. Questions about quantal Ca2+ release. Curr Biol. 1994 Feb 1;4(2):169–172. doi: 10.1016/s0960-9822(94)00041-2. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cardy T. J., Taylor C. W. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J. 1998 Sep 1;334(Pt 2):447–455. doi: 10.1042/bj3340447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cardy T. J., Traynor D., Taylor C. W. Differential regulation of types-1 and -3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem J. 1997 Dec 15;328(Pt 3):785–793. doi: 10.1042/bj3280785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Smedt H., Missiaen L., Parys J. B., Bootman M. D., Mertens L., Van Den Bosch L., Casteels R. Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem. 1994 Aug 26;269(34):21691–21698. [PubMed] [Google Scholar]
- De Smedt H., Missiaen L., Parys J. B., Henning R. H., Sienaert I., Vanlingen S., Gijsens A., Himpens B., Casteels R. Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. Biochem J. 1997 Mar 1;322(Pt 2):575–583. doi: 10.1042/bj3220575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLisle S., Blondel O., Longo F. J., Schnabel W. E., Bell G. I., Welsh M. J. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes. Am J Physiol. 1996 Apr;270(4 Pt 1):C1255–C1261. doi: 10.1152/ajpcell.1996.270.4.C1255. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hagar R. E., Burgstahler A. D., Nathanson M. H., Ehrlich B. E. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. 1998 Nov 5;396(6706):81–84. doi: 10.1038/23954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol. 1990 Jun;95(6):1103–1122. doi: 10.1085/jgp.95.6.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph S. K. The inositol triphosphate receptor family. Cell Signal. 1996 Jan;8(1):1–7. doi: 10.1016/0898-6568(95)02012-8. [DOI] [PubMed] [Google Scholar]
- Marchant J. S., Beecroft M. D., Riley A. M., Jenkins D. J., Marwood R. D., Taylor C. W., Potter B. V. Disaccharide polyphosphates based upon adenophostin A activate hepatic D-myo-inositol 1,4,5-trisphosphate receptors. Biochemistry. 1997 Oct 21;36(42):12780–12790. doi: 10.1021/bi971397v. [DOI] [PubMed] [Google Scholar]
- Marshall I. C., Taylor C. W. Biphasic effects of cytosolic Ca2+ on Ins(1,4,5)P3-stimulated Ca2+ mobilization in hepatocytes. J Biol Chem. 1993 Jun 25;268(18):13214–13220. [PubMed] [Google Scholar]
- Mikoshiba K. The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol. 1997 Jun;7(3):339–345. doi: 10.1016/s0959-4388(97)80061-x. [DOI] [PubMed] [Google Scholar]
- Missiaen L., Parys J. B., Sienaert I., Maes K., Kunzelmann K., Takahashi M., Tanzawa K., De Smedt H. Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells. J Biol Chem. 1998 Apr 10;273(15):8983–8986. doi: 10.1074/jbc.273.15.8983. [DOI] [PubMed] [Google Scholar]
- Missiaen L., Sipma H., Parys J. B., De Smet P., Callewaert G., Hill E., McCarthy T. V., De Smedt H. IP3-induced Ca2+ release in A7r5 vascular smooth-muscle cells represents a partial emptying of the stores and not an all-or-none Ca2+ release of separate quanta. Pflugers Arch. 1999 Apr;437(5):691–694. doi: 10.1007/s004240050833. [DOI] [PubMed] [Google Scholar]
- Miyakawa T., Maeda A., Yamazawa T., Hirose K., Kurosaki T., Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 1999 Mar 1;18(5):1303–1308. doi: 10.1093/emboj/18.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakagawa T., Okano H., Furuichi T., Aruga J., Mikoshiba K. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6244–6248. doi: 10.1073/pnas.88.14.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nucifora F. C., Jr, Sharp A. H., Milgram S. L., Ross C. A. Inositol 1,4,5-trisphosphate receptors in endocrine cells: localization and association in hetero- and homotetramers. Mol Biol Cell. 1996 Jun;7(6):949–960. doi: 10.1091/mbc.7.6.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
- Picard L., Coquil J. F., Mauger J. P. Multiple mechanisms of regulation of the inositol 1,4,5-trisphosphate receptor by calcium. Cell Calcium. 1998 May;23(5):339–348. doi: 10.1016/s0143-4160(98)90029-x. [DOI] [PubMed] [Google Scholar]
- Ramos-Franco J., Fill M., Mignery G. A. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys J. 1998 Aug;75(2):834–839. doi: 10.1016/S0006-3495(98)77572-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sienaert I., Missiaen L., De Smedt H., Parys J. B., Sipma H., Casteels R. Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1997 Oct 10;272(41):25899–25906. doi: 10.1074/jbc.272.41.25899. [DOI] [PubMed] [Google Scholar]
- Sugawara H., Kurosaki M., Takata M., Kurosaki T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 1997 Jun 2;16(11):3078–3088. doi: 10.1093/emboj/16.11.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. W. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):19–33. doi: 10.1016/s0005-2760(98)00122-2. [DOI] [PubMed] [Google Scholar]
- Taylor C. W. Why do hormones stimulate Ca2+ mobilization? Biochem Soc Trans. 1995 Aug;23(3):637–642. doi: 10.1042/bst0230637. [DOI] [PubMed] [Google Scholar]
- Wojcikiewicz R. J., Luo S. G. Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Mol Pharmacol. 1998 Apr;53(4):656–662. doi: 10.1124/mol.53.4.656. [DOI] [PubMed] [Google Scholar]
- Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
- Yoneshima H., Miyawaki A., Michikawa T., Furuichi T., Mikoshiba K. Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol 1,4,5-trisphosphate receptors. Biochem J. 1997 Mar 1;322(Pt 2):591–596. doi: 10.1042/bj3220591. [DOI] [PMC free article] [PubMed] [Google Scholar]