Abstract
Cell-to-cell diffusion of second messengers across intercellular channels allows tissues to co-ordinate responses to extracellular stimuli. Intercellular diffusion of inositol 1,4,5-trisphosphate, locally produced by focal stimulations, sustains the propagation of intercellular Ca(2+) waves, by stimulating the release of intracellular Ca(2+) in neighbouring cells. We previously demonstrated that in cultured articular chondrocytes and HIG-82 synovial cells, studied with digitial fluorescence video imaging, mechanical stimulation of a single cell induced intercellular Ca(2+) waves dependent on the presence of gap junctions. In the absence of extracellular Ca(2+) the propagating distance of the wave decreased significantly in HIG-82 cells, but appeared unaffected in chondrocytes. We now show that both cells types express connexin 43 and a similar functional coupling, thus suggesting that the different Ca(2+) sensitivity of intercellular waves is not due to major differences in gap junction constituent proteins. In HIG-82 synoviocytes, but not in chondrocytes, the Ca(2+) ionophore ionomycin stimulated phosphoinositide hydrolysis in a concentration-dependent manner, an effect strictly dependent on the presence of extracellular Ca(2+), suggesting the expression, in these cells, of a Ca(2+)-sensitive phospholipase C activity. Such an activity could be stimulated also by Ca(2+) influx induced by P(2Y) receptor activation and considerably amplifies ATP-induced inositol phosphate (InsP) production. In contrast, Ca(2+) influx did not affect considerably the response of chondrocytes to ATP stimulation. In HIG-82 cells, the combined application of ionomycin and ATP maximally stimulated InsP synthesis, suggesting the involvement of two independent mechanisms in inositol phosphate generation. These results suggest that in HIG-82 synovial cells the recruitment of a Ca(2+)-sensitive phospholipase C activity could amplify the cell response to a focally applied extracellular stimulus, thus providing a positive feedback mechanism for intercellular wave propagation.
Full Text
The Full Text of this article is available as a PDF (321.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
- Allen V., Swigart P., Cheung R., Cockcroft S., Katan M. Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J. 1997 Oct 15;327(Pt 2):545–552. doi: 10.1042/bj3270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banno Y., Okano Y., Nozawa Y. Thrombin-mediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-delta 1. J Biol Chem. 1994 Jun 3;269(22):15846–15852. [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Bird G. S., Obie J. F., Putney J. W., Jr Effect of cytoplasmic Ca2+ on (1,4,5)IP3 formation in vasopressin-activated hepatocytes. Cell Calcium. 1997 Mar;21(3):253–256. doi: 10.1016/s0143-4160(97)90049-x. [DOI] [PubMed] [Google Scholar]
- Boitano S., Dirksen E. R., Sanderson M. J. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 1992 Oct 9;258(5080):292–295. doi: 10.1126/science.1411526. [DOI] [PubMed] [Google Scholar]
- Brophy C. M., Mills I., Rosales O., Isales C., Sumpio B. E. Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes. Biochem Biophys Res Commun. 1993 Jan 29;190(2):576–581. doi: 10.1006/bbrc.1993.1087. [DOI] [PubMed] [Google Scholar]
- Bruzzone R., White T. W., Paul D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996 May 15;238(1):1–27. doi: 10.1111/j.1432-1033.1996.0001q.x. [DOI] [PubMed] [Google Scholar]
- Charles A. C., Merrill J. E., Dirksen E. R., Sanderson M. J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron. 1991 Jun;6(6):983–992. doi: 10.1016/0896-6273(91)90238-u. [DOI] [PubMed] [Google Scholar]
- Cotrina M. L., Lin J. H., Alves-Rodrigues A., Liu S., Li J., Azmi-Ghadimi H., Kang J., Naus C. C., Nedergaard M. Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15735–15740. doi: 10.1073/pnas.95.26.15735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Andrea P., Vittur F. Ca2+ oscillations and intercellular Ca2+ waves in ATP-stimulated articular chondrocytes. J Bone Miner Res. 1996 Jul;11(7):946–954. doi: 10.1002/jbmr.5650110711. [DOI] [PubMed] [Google Scholar]
- D'Andrea P., Vittur F. Gap junctions mediate intercellular calcium signalling in cultured articular chondrocytes. Cell Calcium. 1996 Nov;20(5):389–397. doi: 10.1016/s0143-4160(96)90001-9. [DOI] [PubMed] [Google Scholar]
- D'andrea P., Calabrese A., Grandolfo M. Intercellular calcium signalling between chondrocytes and synovial cells in co-culture. Biochem J. 1998 Feb 1;329(Pt 3):681–687. doi: 10.1042/bj3290681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donahue H. J., Guilak F., Vander Molen M. A., McLeod K. J., Rubin C. T., Grande D. A., Brink P. R. Chondrocytes isolated from mature articular cartilage retain the capacity to form functional gap junctions. J Bone Miner Res. 1995 Sep;10(9):1359–1364. doi: 10.1002/jbmr.5650100913. [DOI] [PubMed] [Google Scholar]
- Eberhard D. A., Holz R. W. Intracellular Ca2+ activates phospholipase C. Trends Neurosci. 1988 Dec;11(12):517–520. doi: 10.1016/0166-2236(88)90174-9. [DOI] [PubMed] [Google Scholar]
- Felix J. A., Woodruff M. L., Dirksen E. R. Stretch increases inositol 1,4,5-trisphosphate concentration in airway epithelial cells. Am J Respir Cell Mol Biol. 1996 Mar;14(3):296–301. doi: 10.1165/ajrcmb.14.3.8845181. [DOI] [PubMed] [Google Scholar]
- Grandolfo M., Calabrese A., D'Andrea P. Mechanism of mechanically induced intercellular calcium waves in rabbit articular chondrocytes and in HIG-82 synovial cells. J Bone Miner Res. 1998 Mar;13(3):443–453. doi: 10.1359/jbmr.1998.13.3.443. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hamerman D. The biology of osteoarthritis. N Engl J Med. 1989 May 18;320(20):1322–1330. doi: 10.1056/NEJM198905183202006. [DOI] [PubMed] [Google Scholar]
- Hansen M., Boitano S., Dirksen E. R., Sanderson M. J. A role for phospholipase C activity but not ryanodine receptors in the initiation and propagation of intercellular calcium waves. J Cell Sci. 1995 Jul;108(Pt 7):2583–2590. doi: 10.1242/jcs.108.7.2583. [DOI] [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Jorgensen N. R., Geist S. T., Civitelli R., Steinberg T. H. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol. 1997 Oct 20;139(2):497–506. doi: 10.1083/jcb.139.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kulik T. J., Bialecki R. A., Colucci W. S., Rothman A., Glennon E. T., Underwood R. H. Stretch increases inositol trisphosphate and inositol tetrakisphosphate in cultured pulmonary vascular smooth muscle cells. Biochem Biophys Res Commun. 1991 Oct 31;180(2):982–987. doi: 10.1016/s0006-291x(05)81162-3. [DOI] [PubMed] [Google Scholar]
- Lee S. B., Rhee S. G. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol. 1995 Apr;7(2):183–189. doi: 10.1016/0955-0674(95)80026-3. [DOI] [PubMed] [Google Scholar]
- Leong W. S., Russell R. G., Caswell A. M. Stimulation of cartilage resorption by extracellular ATP acting at P2-purinoceptors. Biochim Biophys Acta. 1994 Nov 11;1201(2):298–304. doi: 10.1016/0304-4165(94)90054-x. [DOI] [PubMed] [Google Scholar]
- Meyer T., Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. doi: 10.1146/annurev.bb.20.060191.001101. [DOI] [PubMed] [Google Scholar]
- Newman E. A., Zahs K. R. Calcium waves in retinal glial cells. Science. 1997 Feb 7;275(5301):844–847. doi: 10.1126/science.275.5301.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osipchuk Y., Cahalan M. Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature. 1992 Sep 17;359(6392):241–244. doi: 10.1038/359241a0. [DOI] [PubMed] [Google Scholar]
- Penner R., Fasolato C., Hoth M. Calcium influx and its control by calcium release. Curr Opin Neurobiol. 1993 Jun;3(3):368–374. doi: 10.1016/0959-4388(93)90130-q. [DOI] [PubMed] [Google Scholar]
- Poole C. A., Flint M. H., Beaumont B. W. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res. 1987;5(4):509–522. doi: 10.1002/jor.1100050406. [DOI] [PubMed] [Google Scholar]
- Rhee S. G., Kim H., Suh P. G., Choi W. C. Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans. 1991 Apr;19(2):337–341. doi: 10.1042/bst0190337. [DOI] [PubMed] [Google Scholar]
- Robb-Gaspers L. D., Thomas A. P. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem. 1995 Apr 7;270(14):8102–8107. doi: 10.1074/jbc.270.14.8102. [DOI] [PubMed] [Google Scholar]
- Ryu S. H., Suh P. G., Cho K. S., Lee K. Y., Rhee S. G. Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase C. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6649–6653. doi: 10.1073/pnas.84.19.6649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanderson M. J., Charles A. C., Dirksen E. R. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1990 Jul;1(8):585–596. doi: 10.1091/mbc.1.8.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venance L., Stella N., Glowinski J., Giaume C. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci. 1997 Mar 15;17(6):1981–1992. doi: 10.1523/JNEUROSCI.17-06-01981.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White T. W., Bruzzone R. Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr. 1996 Aug;28(4):339–350. doi: 10.1007/BF02110110. [DOI] [PubMed] [Google Scholar]
- Yoko-o T., Matsui Y., Yagisawa H., Nojima H., Uno I., Toh-e A. The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1804–1808. doi: 10.1073/pnas.90.5.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuste R., Nelson D. A., Rubin W. W., Katz L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron. 1995 Jan;14(1):7–17. doi: 10.1016/0896-6273(95)90236-8. [DOI] [PubMed] [Google Scholar]