Abstract
Nod factors are important elicitors in legume-bacterium symbiosis. Any candidate plant receptor(s) for these lipo-oligosaccharides can be expected to show some lectin-like properties. A novel protein (P60), a native tetramer with 60 kDa monomers, has been isolated from a membrane fraction of Medicago sativa (lucerne, alfalfa) roots by using affinity chromatography with either GlcNAc or N,N', N"-triacetyl-(1-->4)-beta-d-chitotriose [(GlcNAc)(3)] grafted to agarose beads as the matrix and, in a second step, Sephadex G-200 gel filtration. With (GlcNAc)(3)-agarose an additional protein of 78 kDa was isolated. P60 showed haemagglutination activity with specificity for GalNAc, GalN, GlcNAc and GlcN. Binding experiments with radioactive GlcNAc gave a K(d) of 95 nM and one binding site per monomer of P60; Nod factor competed strongly for this binding. In native PAGE, protein incubated with O-sulphated Nod factors had a higher electrophoretic mobility as a consequence of binding. However, the largest modification was observed with a natural mixture of Nod factors, containing the O-acetylated and O-sulphated tetrasaccharidic NodRm-IV(Ac,S) (in which Ac stands for an O-acetylated group at the non-reducing end and S for O-sulphation at the reducing end) in addition to the non-O-acetylated NodRm-IV(S) (which alone had little effect) and NodRm-V(S). The native PAGE study was also performed with known lectins from other sources, but only the 34 kDa lectin of Phytolacca americana (pokeweed) showed any such interaction, although without discrimination between Nod factors. Finally, one peptide of each isolated protein was sequenced; the peptide from P60 showed some similarity with dihydrolipoamide dehydrogenase and ferric leghaemoglobin reductase, whereas the peptide from P78 was identical with an analogous region of 70 kDa heat shock protein.
Full Text
The Full Text of this article is available as a PDF (306.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. V., Neven L. G., Li Q. B., Haskell D. W., Guy C. L. A cDNA encoding the endoplasmic reticulum-luminal heat-shock protein from spinach (Spinacia oleracea L.). Plant Physiol. 1994 Jan;104(1):303–304. doi: 10.1104/pp.104.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bono J. J., Riond J., Nicolaou K. C., Bockovich N. J., Estevez V. A., Cullimore J. V., Ranjeva R. Characterization of a binding site for chemically synthesized lipo-oligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J. 1995 Feb;7(2):253–260. doi: 10.1046/j.1365-313x.1995.7020253.x. [DOI] [PubMed] [Google Scholar]
- Bourguignon J., Macherel D., Neuburger M., Douce R. Isolation, characterization, and sequence analysis of a cDNA clone encoding L-protein, the dihydrolipoamide dehydrogenase component of the glycine cleavage system from pea-leaf mitochondria. Eur J Biochem. 1992 Mar 1;204(2):865–873. doi: 10.1111/j.1432-1033.1992.tb16706.x. [DOI] [PubMed] [Google Scholar]
- Chrispeels M. J., Raikhel N. V. Lectins, lectin genes, and their role in plant defense. Plant Cell. 1991 Jan;3(1):1–9. doi: 10.1105/tpc.3.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Côté F., Hahn M. G. Oligosaccharins: structures and signal transduction. Plant Mol Biol. 1994 Dec;26(5):1379–1411. doi: 10.1007/BF00016481. [DOI] [PubMed] [Google Scholar]
- Danson M. J., Conroy K., McQuattie A., Stevenson K. J. Dihydrolipoamide dehydrogenase from Trypanosoma brucei. Characterization and cellular location. Biochem J. 1987 May 1;243(3):661–665. doi: 10.1042/bj2430661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diaz C. L., Logman TJJ., Stam H. C., Kijne J. W. Sugar-Binding Activity of Pea Lectin Expressed in White Clover Hairy Roots. Plant Physiol. 1995 Dec;109(4):1167–1177. doi: 10.1104/pp.109.4.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dénarié J., Cullimore J. Lipo-oligosaccharide nodulation factors: a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell. 1993 Sep 24;74(6):951–954. doi: 10.1016/0092-8674(93)90717-5. [DOI] [PubMed] [Google Scholar]
- Dénarié J., Debellé F., Rosenberg C. Signaling and host range variation in nodulation. Annu Rev Microbiol. 1992;46:497–531. doi: 10.1146/annurev.mi.46.100192.002433. [DOI] [PubMed] [Google Scholar]
- Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
- Farmer E. E., Moloshok T. D., Saxton M. J., Ryan C. A. Oligosaccharide signaling in plants. Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem. 1991 Feb 15;266(5):3140–3145. [PubMed] [Google Scholar]
- Felix G, Baureithel K, Boller T. Desensitization of the perception system for chitin fragments in tomato cells . Plant Physiol. 1998 Jun;117(2):643–650. doi: 10.1104/pp.117.2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heikkila J. J., Papp J. E., Schultz G. A., Bewley J. D. Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic Acid, and wounding. Plant Physiol. 1984 Sep;76(1):270–274. doi: 10.1104/pp.76.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hervé C., Serres J., Dabos P., Canut H., Barre A., Rougé P., Lescure B. Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Mol Biol. 1999 Mar;39(4):671–682. doi: 10.1023/a:1006136701595. [DOI] [PubMed] [Google Scholar]
- Ito Y., Kaku H., Shibuya N. Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J. 1997 Aug;12(2):347–356. doi: 10.1046/j.1365-313x.1997.12020347.x. [DOI] [PubMed] [Google Scholar]
- Ji L., Becana M., Sarath G., Klucas R. V. Cloning and sequence analysis of a cDNA encoding ferric leghemoglobin reductase from soybean nodules. Plant Physiol. 1994 Feb;104(2):453–459. doi: 10.1104/pp.104.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalinski A., Rowley D. L., Loer D. S., Foley C., Buta G., Herman E. M. Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta. 1995;195(4):611–621. doi: 10.1007/BF00195722. [DOI] [PubMed] [Google Scholar]
- Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. doi: 10.1038/344781a0. [DOI] [PubMed] [Google Scholar]
- Minic Z., Brown S., De Kouchkovsky Y., Schultze M., Staehelin C. Purification and characterization of a novel chitinase-lysozyme, of another chitinase, both hydrolysing Rhizobium meliloti Nod factors, and of a pathogenesis-related protein from Medicago sativa roots. Biochem J. 1998 Jun 1;332(Pt 2):329–335. doi: 10.1042/bj3320329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultze M., Quiclet-Sire B., Kondorosi E., Virelizer H., Glushka J. N., Endre G., Géro S. D., Kondorosi A. Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):192–196. doi: 10.1073/pnas.89.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi K., Yurino N., Kino M., Ishiguro M., Funatsu G. The amino acid sequence of mitogenic lectin-B from the roots of pokeweed (Phytolacca americana). Biosci Biotechnol Biochem. 1997 Apr;61(4):690–698. doi: 10.1271/bbb.61.690. [DOI] [PubMed] [Google Scholar]