Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Feb 1;345(Pt 3):429–435.

Preliminary evidence for the existence of specific functional assemblies between enzymes of the beta-oxidation pathway and the respiratory chain.

A Parker 1, P C Engel 1
PMCID: PMC1220774  PMID: 10642498

Abstract

The electron-transferring flavoprotein (ETF) has been detected in two large soluble-protein complexes partially purified from sonicated porcine liver mitochondria. Size-exclusion chromatography and sucrose-density ultracentrifugation suggested molecular masses in the region of 390 to 420 kDa for the two complexes. Activities of medium-chain acyl-CoA dehydrogenase, sarcosine dehydrogenase and ETF:ubiquinone oxidoreductase were also detected. No evidence of oxidative-phosphorylation properties was obtained. Treatment with antimycin A inhibited the activity of both complexes. Pyridine haemochromogens, prepared from the partially purified species, show the presence of cytochrome proteins. The possible composition of these complexes and their relationship to the electron transport chain are discussed.

Full Text

The Full Text of this article is available as a PDF (159.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEINERT H., PAGE E. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. V. Oxidation-reductions of the flavoproteins. J Biol Chem. 1957 Mar;225(1):479–497. [PubMed] [Google Scholar]
  2. Beckmann J. D., Frerman F. E. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. doi: 10.1021/bi00336a016. [DOI] [PubMed] [Google Scholar]
  3. Beckmann J. D., Frerman F. E. The effects of pH, ionic strength, and chemical modifications on the reaction of electron transfer flavoprotein with an acyl coenzyme A dehydrogenase. J Biol Chem. 1983 Jun 25;258(12):7563–7569. [PubMed] [Google Scholar]
  4. Bedzyk L. A., Escudero K. W., Gill R. E., Griffin K. J., Frerman F. E. Cloning, sequencing, and expression of the genes encoding subunits of Paracoccus denitrificans electron transfer flavoprotein. J Biol Chem. 1993 Sep 25;268(27):20211–20217. [PubMed] [Google Scholar]
  5. Bertrand C., Dumoulin R., Divry P., Mathieu M., Vianey-Saban C. Purification of electron transfer flavoprotein from pig liver mitochondria and its application to the diagnosis of deficiencies of acyl-CoA dehydrogenases in human fibroblasts. Clin Chim Acta. 1992 Sep 15;210(1-2):75–91. doi: 10.1016/0009-8981(92)90047-t. [DOI] [PubMed] [Google Scholar]
  6. Binstock J. F., Pramanik A., Schulz H. Isolation of a multi-enzyme complex of fatty acid oxidation from Escherichia coli. Proc Natl Acad Sci U S A. 1977 Feb;74(2):492–495. doi: 10.1073/pnas.74.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chapman M. J., Miller L. R., Ontko J. A. Localization of the enzymes of ketogenesis in rat liver mitochondria. J Cell Biol. 1973 Aug;58(2):284–306. doi: 10.1083/jcb.58.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eder M., Kräutle F., Dong Y., Vock P., Kieweg V., Kim J. J., Strauss A. W., Ghisla S. Characterization of human and pig kidney long-chain-acyl-CoA dehydrogenases and their role in beta-oxidation. Eur J Biochem. 1997 May 1;245(3):600–607. doi: 10.1111/j.1432-1033.1997.00600.x. [DOI] [PubMed] [Google Scholar]
  9. FLEISCHER S., KLOUWEN H., BRIERLEY G. Studies of the electron transfer system. 38. Lipid composition of purified enzyme preparations derived from beef heart mitochondria. J Biol Chem. 1961 Nov;236:2936–2941. [PubMed] [Google Scholar]
  10. FRISELL W. R., MACKENZIE C. G. Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase. J Biol Chem. 1962 Jan;237:94–98. [PubMed] [Google Scholar]
  11. Fahien L. A., Kmiotek E. Precipitation of complexes between glutamate dehydrogenase and mitochondrial enzymes. J Biol Chem. 1979 Jul 10;254(13):5983–5990. [PubMed] [Google Scholar]
  12. Formisano S., Johnson M. L., Edelhoch H. Effects of Hofmeister salts on the self-association of glucagon. Biochemistry. 1978 Apr 18;17(8):1468–1473. doi: 10.1021/bi00601a017. [DOI] [PubMed] [Google Scholar]
  13. Frerman F. E., Mielke D., Huhta K. The functional role of carboxyl residues in an acyl-CoA dehydrogenase. J Biol Chem. 1980 Mar 10;255(5):2199–2202. [PubMed] [Google Scholar]
  14. GREEN D. E., MII S., KOHOUT P. M. Studies on the terminal electron transport system. I. Succinic dehydrogenase. J Biol Chem. 1955 Dec;217(2):551–567. [PubMed] [Google Scholar]
  15. GRIFFITHS D. E., WHARTON D. C. Studies of the electron transport system. XXXV. Purification and properties of cytochrome oxidase. J Biol Chem. 1961 Jun;236:1850–1856. [PubMed] [Google Scholar]
  16. Hall C. L. Acyl-CoA dehydrogenases from pig liver mitochondria. Methods Enzymol. 1981;71(Pt 100):375–385. doi: 10.1016/0076-6879(81)71047-4. [DOI] [PubMed] [Google Scholar]
  17. Halper L. A., Srere P. A. Interaction between citrate synthase and mitochondrial malate dehydrogenase in the presence of polyethylene glycol. Arch Biochem Biophys. 1977 Dec;184(2):529–534. doi: 10.1016/0003-9861(77)90462-3. [DOI] [PubMed] [Google Scholar]
  18. Husain M., Steenkamp D. J. Electron transfer flavoprotein from pig liver mitochondria. A simple purification and re-evaluation of some of the molecular properties. Biochem J. 1983 Feb 1;209(2):541–545. doi: 10.1042/bj2090541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ikeda Y., Okamura-Ikeda K., Tanaka K. Purification and characterization of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the apoenzyme to the holoenzyme. J Biol Chem. 1985 Jan 25;260(2):1311–1325. [PubMed] [Google Scholar]
  20. Ikeda Y., Tanaka K. Purification and characterization of 2-methyl-branched chain acyl coenzyme A dehydrogenase, an enzyme involved in the isoleucine and valine metabolism, from rat liver mitochondria. J Biol Chem. 1983 Aug 10;258(15):9477–9487. [PubMed] [Google Scholar]
  21. Ikeda Y., Tanaka K. Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria. J Biol Chem. 1983 Jan 25;258(2):1077–1085. [PubMed] [Google Scholar]
  22. Izai K., Uchida Y., Orii T., Yamamoto S., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027–1033. [PubMed] [Google Scholar]
  23. Kispal G., Sumegi B., Alkonyi I. Isolation and characterization of 3-hydroxyacyl coenzyme A dehydrogenase-binding protein from pig heart inner mitochondrial membrane. J Biol Chem. 1986 Oct 25;261(30):14209–14213. [PubMed] [Google Scholar]
  24. LINNANE A. W., ZIEGLER D. M. Studies on the mechanism of oxidative phosphorylation. V. The phosphorylating properties of the electron transport particle. Biochim Biophys Acta. 1958 Sep;29(3):630–638. doi: 10.1016/0006-3002(58)90021-0. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lehman T. C., Thorpe C. A new form of mammalian electron-transferring flavoprotein. Arch Biochem Biophys. 1992 Feb 1;292(2):594–599. doi: 10.1016/0003-9861(92)90036-v. [DOI] [PubMed] [Google Scholar]
  27. Lenich A. C., Goodman S. I. The purification and characterization of glutaryl-coenzyme A dehydrogenase from porcine and human liver. J Biol Chem. 1986 Mar 25;261(9):4090–4096. [PubMed] [Google Scholar]
  28. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  29. Roberts D. L., Frerman F. E., Kim J. J. Three-dimensional structure of human electron transfer flavoprotein to 2.1-A resolution. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14355–14360. doi: 10.1073/pnas.93.25.14355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruzicka F. J., Beinert H. A new membrane iron-sulfur flavoprotein of the mitochondrial electron transfer system. The entrance point of the fatty acyl dehydrogenation pathway? Biochem Biophys Res Commun. 1975 Sep 16;66(2):622–631. doi: 10.1016/0006-291x(75)90555-0. [DOI] [PubMed] [Google Scholar]
  31. Sato K., Nishina Y., Shiga K. Electron-transferring flavoprotein has an AMP-binding site in addition to the FAD-binding site. J Biochem. 1993 Aug;114(2):215–222. doi: 10.1093/oxfordjournals.jbchem.a124157. [DOI] [PubMed] [Google Scholar]
  32. Stanley K. K., Tubbs P. K. The occurrence of intermediates in mitochondrial fatty acid oxidation. FEBS Lett. 1974 Mar 1;39(3):325–328. doi: 10.1016/0014-5793(74)80141-9. [DOI] [PubMed] [Google Scholar]
  33. Sumegi B., Porpaczy Z., Alkonyi I. Kinetic advantage of the interaction between the fatty acid beta-oxidation enzymes and the complexes of the respiratory chain. Biochim Biophys Acta. 1991 Jan 28;1081(2):121–128. doi: 10.1016/0005-2760(91)90016-b. [DOI] [PubMed] [Google Scholar]
  34. Sumegi B., Srere P. A. Binding of the enzymes of fatty acid beta-oxidation and some related enzymes to pig heart inner mitochondrial membrane. J Biol Chem. 1984 Jul 25;259(14):8748–8752. [PubMed] [Google Scholar]
  35. Sumegi B., Srere P. A. Complex I binds several mitochondrial NAD-coupled dehydrogenases. J Biol Chem. 1984 Dec 25;259(24):15040–15045. [PubMed] [Google Scholar]
  36. Thorpe C. Acyl-CoA dehydrogenase from pig kidney. Methods Enzymol. 1981;71(Pt 100):366–374. doi: 10.1016/0076-6879(81)71046-2. [DOI] [PubMed] [Google Scholar]
  37. Thorpe C., Matthews R. G., Williams C. H., Jr Acyl-coenzyme A dehydrogenase from pig kidney. Purification and properties. Biochemistry. 1979 Jan 23;18(2):331–337. doi: 10.1021/bi00569a016. [DOI] [PubMed] [Google Scholar]
  38. Williamson G., Engel P. C. Butyryl-CoA dehydrogenase from Megasphaera elsdenii. Specificity of the catalytic reaction. Biochem J. 1984 Mar 1;218(2):521–529. doi: 10.1042/bj2180521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wilson E. K., Huang L., Sutcliffe M. J., Mathews F. S., Hille R., Scrutton N. S. An exposed tyrosine on the surface of trimethylamine dehydrogenase facilitates electron transfer to electron transferring flavoprotein: kinetics of transfer in wild-type and mutant complexes. Biochemistry. 1997 Jan 7;36(1):41–48. doi: 10.1021/bi961224q. [DOI] [PubMed] [Google Scholar]
  40. Wittwer A. J., Wagner C. Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. Purification and folate-binding characteristics. J Biol Chem. 1981 Apr 25;256(8):4102–4108. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES