Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 1;346(Pt 2):455–461.

Involvement of Gialpha2 in sodium butyrate-induced erythroblastic differentiation of K562 cells.

M G Davis 1, Y Kawai 1, I J Arinze 1
PMCID: PMC1220873  PMID: 10677366

Abstract

The chronic myelogenous leukaemia cell line K562 can be triggered in culture to differentiate along the erythrocytic pathway in response to a variety of stimulatory agents. In the presence of sodium butyrate, these cells differentiate to erythroblasts and acquire the capability to synthesize haemoglobin. We used this cell system to study alterations in the levels of several G-protein subunits during the cell differentiation programme and to assess the involvement of G(i)alpha2 in this process. Western immunoblot analysis revealed the presence of G(s)alpha1, G(s)alpha2, G(i)alpha2, G(q)alpha, Galpha(12), Gbeta1 and Gbeta2 in K562 cells. G(o)alpha, G(z)alpha, Galpha(13) and Galpha(16) were not detected. Although the levels of several G-protein subunits were altered after treatment with sodium butyrate, the most striking change was the robust increase in the levels of G(i)alpha2, which was accompanied by an increase in the mRNA for G(i)alpha2. Inactivation of G(i)alpha2 by adding Bordetella pertussis toxin to the cultures inhibited erythroblastic differentiation by as much as 62%, as measured by haemoglobin accumulation. Furthermore, the addition of an oligonucleotide anti-sense to G(i)alpha2 inhibited the sodium butyrate-induced robust increase in G(i)alpha2 levels, decreasing it to the basal levels seen in control cells; this treatment decreased the erythroblastic differentiation of the cells (as measured by haemoglobin expression) by 50%. Taken together, these findings imply that increased levels of G(i)alpha2 contribute to the sodium butyrate-induced erythroblastic differentiation of K562 cells.

Full Text

The Full Text of this article is available as a PDF (200.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amatruda T. T., 3rd, Steele D. A., Slepak V. Z., Simon M. I. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5587–5591. doi: 10.1073/pnas.88.13.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson L. C., Jokinen M., Gahmberg C. G. Induction of erythroid differentiation in the human leukaemia cell line K562. Nature. 1979 Mar 22;278(5702):364–365. doi: 10.1038/278364a0. [DOI] [PubMed] [Google Scholar]
  3. Bahouth S. W. Thyroid hormone regulation of transmembrane signalling in neonatal rat ventricular myocytes by selective alteration of the expression and coupling of G-protein alpha-subunits. Biochem J. 1995 May 1;307(Pt 3):831–841. doi: 10.1042/bj3070831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Candido E. P., Reeves R., Davie J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 1978 May;14(1):105–113. doi: 10.1016/0092-8674(78)90305-7. [DOI] [PubMed] [Google Scholar]
  5. Casey P. G proteins. Visual differences. Nature. 1992 Oct 22;359(6397):671–672. doi: 10.1038/359671a0. [DOI] [PubMed] [Google Scholar]
  6. Chénais B., Molle I., Trentesaux C., Jeannesson P. Time-course of butyric acid-induced differentiation in human K562 leukemic cell line: rapid increase in gamma-globin, porphobilinogen deaminase and NF-E2 mRNA levels. Leukemia. 1997 Sep;11(9):1575–1579. doi: 10.1038/sj.leu.2400755. [DOI] [PubMed] [Google Scholar]
  7. Feng P., Ge L., Akyhani N., Liau G. Sodium butyrate is a potent modulator of smooth muscle cell proliferation and gene expression. Cell Prolif. 1996 May;29(5):231–241. doi: 10.1046/j.1365-2184.1996.00998.x. [DOI] [PubMed] [Google Scholar]
  8. Freissmuth M., Casey P. J., Gilman A. G. G proteins control diverse pathways of transmembrane signaling. FASEB J. 1989 Aug;3(10):2125–2131. [PubMed] [Google Scholar]
  9. Gupta S., Alpini G., Vemuru R. P., Hurston E., Shafritz D. A. Butyrate synchronization of hepatocytes: modulation of cycling and cell cycle regulated gene expression. Growth Factors. 1994;10(3):171–180. doi: 10.3109/08977199409000235. [DOI] [PubMed] [Google Scholar]
  10. Hamm H. E. The many faces of G protein signaling. J Biol Chem. 1998 Jan 9;273(2):669–672. doi: 10.1074/jbc.273.2.669. [DOI] [PubMed] [Google Scholar]
  11. Heruth D. P., Zirnstein G. W., Bradley J. F., Rothberg P. G. Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. J Biol Chem. 1993 Sep 25;268(27):20466–20472. [PubMed] [Google Scholar]
  12. Itoh H., Toyama R., Kozasa T., Tsukamoto T., Matsuoka M., Kaziro Y. Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs. J Biol Chem. 1988 May 15;263(14):6656–6664. [PubMed] [Google Scholar]
  13. Jho E. H., Davis R. J., Malbon C. C. c-Jun amino-terminal kinase is regulated by Galpha12/Galpha13 and obligate for differentiation of P19 embryonal carcinoma cells by retinoic acid. J Biol Chem. 1997 Sep 26;272(39):24468–24474. doi: 10.1074/jbc.272.39.24468. [DOI] [PubMed] [Google Scholar]
  14. Jho E. H., Malbon C. C. Galpha12 and Galpha13 mediate differentiation of P19 mouse embryonal carcinoma cells in response to retinoic acid. J Biol Chem. 1997 Sep 26;272(39):24461–24467. doi: 10.1074/jbc.272.39.24461. [DOI] [PubMed] [Google Scholar]
  15. Jiang P., Arinze I. J. Developmental and glucocorticoid modulation of the expression of mRNAs for Gs alpha and G beta subunits in neonatal liver. Mol Cell Endocrinol. 1994 Feb;99(1):95–102. [PubMed] [Google Scholar]
  16. Kawai Y., Arinze I. J. Differential localization and development-dependent expression of G-protein subunits, Go alpha and G beta, in rabbit heart. J Mol Cell Cardiol. 1996 Jul;28(7):1555–1564. doi: 10.1006/jmcc.1996.0146. [DOI] [PubMed] [Google Scholar]
  17. Kawai Y., Arinze I. J. Glucocorticoid regulation of G-protein subunits in neonatal liver. Mol Cell Endocrinol. 1993 Jan;90(2):203–209. doi: 10.1016/0303-7207(93)90153-b. [DOI] [PubMed] [Google Scholar]
  18. Kawai Y., Arinze I. J. Ontogeny of guanine-nucleotide-binding regulatory proteins in rabbit liver. Biochem J. 1991 Mar 1;274(Pt 2):439–444. doi: 10.1042/bj2740439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kitanaka A., Waki M., Kamano H., Tanaka T., Kubota Y., Ohnishi H., Takahara J., Irino S. Antisense src expression inhibits proliferation and erythropoietin-induced erythroid differentiation of K562 human leukemia cells. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1534–1540. doi: 10.1006/bbrc.1994.1878. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lee D. Y., Hayes J. J., Pruss D., Wolffe A. P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993 Jan 15;72(1):73–84. doi: 10.1016/0092-8674(93)90051-q. [DOI] [PubMed] [Google Scholar]
  22. Li Y., Mende U., Lewis C., Neer E. J. Maintenance of cellular levels of G-proteins: different efficiencies of alpha s and alpha o synthesis in GH3 cells. Biochem J. 1996 Sep 15;318(Pt 3):1071–1077. doi: 10.1042/bj3181071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liu X., Malbon C. C., Wang H. Y. Identification of amino acid residues of Gsalpha critical to repression of adipogenesis. J Biol Chem. 1998 May 8;273(19):11685–11694. doi: 10.1074/jbc.273.19.11685. [DOI] [PubMed] [Google Scholar]
  24. Loganzo F., Jr, Fletcher P. W. Follicle-stimulating hormone increases the turnover of G-protein alpha i-1- and alpha i-2-subunit messenger RNA in Sertoli cells by a mechanism that is independent of protein synthesis. Mol Endocrinol. 1993 Mar;7(3):434–440. doi: 10.1210/mend.7.3.8483480. [DOI] [PubMed] [Google Scholar]
  25. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  26. Luetje C. W., Tietje K. M., Christian J. L., Nathanson N. M. Differential tissue expression and developmental regulation of guanine nucleotide binding regulatory proteins and their messenger RNAs in rat heart. J Biol Chem. 1988 Sep 15;263(26):13357–13365. [PubMed] [Google Scholar]
  27. Marks D. C., Davey M. W., Davey R. A., Kidman A. D. Expression of multidrug resistance in response to differentiation in the K562 human leukaemia cell line. Biochem Pharmacol. 1995 Aug 8;50(4):475–480. doi: 10.1016/0006-2952(95)00157-u. [DOI] [PubMed] [Google Scholar]
  28. McLaughlin S. K., McKinnon P. J., Margolskee R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature. 1992 Jun 18;357(6379):563–569. doi: 10.1038/357563a0. [DOI] [PubMed] [Google Scholar]
  29. Milligan G. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J. 1988 Oct 1;255(1):1–13. doi: 10.1042/bj2550001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mivechi N. F., Park Y. M., Ouyang H., Shi X. Y., Hahn G. M. Selective expression of heat shock genes during differentiation of human myeloid leukemic cells. Leuk Res. 1994 Aug;18(8):597–608. doi: 10.1016/0145-2126(94)90041-8. [DOI] [PubMed] [Google Scholar]
  31. Morris A. J., Malbon C. C. Physiological regulation of G protein-linked signaling. Physiol Rev. 1999 Oct;79(4):1373–1430. doi: 10.1152/physrev.1999.79.4.1373. [DOI] [PubMed] [Google Scholar]
  32. Mortensen R. M., Zubiaur M., Neer E. J., Seidman J. G. Embryonic stem cells lacking a functional inhibitory G-protein subunit (alpha i2) produced by gene targeting of both alleles. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7036–7040. doi: 10.1073/pnas.88.16.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moxham C. M., Hod Y., Malbon C. C. Induction of G alpha i2-specific antisense RNA in vivo inhibits neonatal growth. Science. 1993 May 14;260(5110):991–995. doi: 10.1126/science.8493537. [DOI] [PubMed] [Google Scholar]
  34. Moxham C. M., Malbon C. C. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature. 1996 Feb 29;379(6568):840–844. doi: 10.1038/379840a0. [DOI] [PubMed] [Google Scholar]
  35. Mumby S. M., Gilman A. G. Synthetic peptide antisera with determined specificity for G protein alpha or beta subunits. Methods Enzymol. 1991;195:215–233. doi: 10.1016/0076-6879(91)95168-j. [DOI] [PubMed] [Google Scholar]
  36. Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
  37. Norton V. G., Marvin K. W., Yau P., Bradbury E. M. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem. 1990 Nov 15;265(32):19848–19852. [PubMed] [Google Scholar]
  38. Phelan S. A., Lindberg C., Call K. M. Wilms' tumor gene, WT1, mRNA is down-regulated during induction of erythroid and megakaryocytic differentiation of K562 cells. Cell Growth Differ. 1994 Jun;5(6):677–686. [PubMed] [Google Scholar]
  39. Rivero J. A., Adunyah S. E. Sodium butyrate stimulates PKC activation and induces differential expression of certain PKC isoforms during erythroid differentiation. Biochem Biophys Res Commun. 1998 Jul 30;248(3):664–668. doi: 10.1006/bbrc.1998.9041. [DOI] [PubMed] [Google Scholar]
  40. Rowley P. T., Ohlsson-Wilhelm B. M., Farley B. A., LaBella S. Inducers of erythroid differentiation in K562 human leukemia cells. Exp Hematol. 1981 Jan;9(1):32–37. [PubMed] [Google Scholar]
  41. Rutherford T. R., Clegg J. B., Weatherall D. J. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979 Jul 12;280(5718):164–165. doi: 10.1038/280164a0. [DOI] [PubMed] [Google Scholar]
  42. Schlake T., Klehr-Wirth D., Yoshida M., Beppu T., Bode J. Gene expression within a chromatin domain: the role of core histone hyperacetylation. Biochemistry. 1994 Apr 12;33(14):4197–4206. doi: 10.1021/bi00180a012. [DOI] [PubMed] [Google Scholar]
  43. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  44. Thomsen B., Bendixen C., Westergaard O. Histone hyperacetylation is accompanied by changes in DNA topology in vivo. Eur J Biochem. 1991 Oct 1;201(1):107–111. doi: 10.1111/j.1432-1033.1991.tb16262.x. [DOI] [PubMed] [Google Scholar]
  45. Toscani A., Soprano D. R., Soprano K. J. Molecular analysis of sodium butyrate-induced growth arrest. Oncogene Res. 1988;3(3):223–238. [PubMed] [Google Scholar]
  46. Velázquez O. C., Zhou D., Seto R. W., Jabbar A., Choi J., Lederer H. M., Rombeau J. L. In vivo crypt surface hyperproliferation is decreased by butyrate and increased by deoxycholate in normal rat colon: associated in vivo effects on c-Fos and c-Jun expression. JPEN J Parenter Enteral Nutr. 1996 Jul-Aug;20(4):243–250. doi: 10.1177/0148607196020004243. [DOI] [PubMed] [Google Scholar]
  47. Wang H. Y., Watkins D. C., Malbon C. C. Antisense oligodeoxynucleotides to GS protein alpha-subunit sequence accelerate differentiation of fibroblasts to adipocytes. Nature. 1992 Jul 23;358(6384):334–337. doi: 10.1038/358334a0. [DOI] [PubMed] [Google Scholar]
  48. Watkins D. C., Johnson G. L., Malbon C. C. Regulation of the differentiation of teratocarcinoma cells into primitive endoderm by G alpha i2. Science. 1992 Nov 20;258(5086):1373–1375. doi: 10.1126/science.1455234. [DOI] [PubMed] [Google Scholar]
  49. Wilkie T. M., Scherle P. A., Strathmann M. P., Slepak V. Z., Simon M. I. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10049–10053. doi: 10.1073/pnas.88.22.10049. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES