Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Mar 15;346(Pt 3):737–742.

Deuterium-labelled isotopomers of 2-C-methyl-D-erythritol as tools for the elucidation of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis.

L Charon 1, J F Hoeffler 1, C Pale-Grosdemange 1, L M Lois 1, N Campos 1, A Boronat 1, M Rohmer 1
PMCID: PMC1220907  PMID: 10698701

Abstract

Escherichia coli synthesizes its isoprenoids via the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The MC4100dxs::CAT strain, defective in deoxyxylulose-5-phosphate synthase, which is the first enzyme in this metabolic route, exclusively synthesizes its isoprenoids from exogenous 2-C-methyl-D-erythritol (ME) added to the culture medium. The fate of the hydrogen atoms in the MEP pathway was followed by the incorporation of [1,1-(2)H(2)]ME and [3,5,5,5-(2)H(4)]ME. The two C-1 hydrogen atoms of ME were found without any loss in the prenyl chain of menaquinone and/or ubiquinone on the carbon atoms derived from C-4 of isopentenyl diphosphate (IPP) and on the E-methyl group of dimethylallyl diphosphate (DMAPP), the C-5 hydrogen atoms on the methyl groups derived from IPP C-5 methyl group and the Z-methyl group of DMAPP. This showed that no changes in the oxidation state of these carbon atoms occurred in the reaction sequence between MEP and IPP. Furthermore, no deuterium scrambling was observed between the carbon atoms derived from C-4 and C-5 of IPP or DMAPP, suggesting a completely stereoselective IPP isomerase or no significant activity of this enzyme. The C-3 deuterium atom of [3,5,5,5-(2)H(4)]ME was preserved only in the DMAPP starter unit and was completely missing from all those derived from IPP. This finding, aided by the non-essential role of the IPP isomerase gene, suggests the presence in E. coli of two different routes towards IPP and DMAPP, starting from a common intermediate derived from MEP.

Full Text

The Full Text of this article is available as a PDF (141.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arigoni D., Eisenreich W., Latzel C., Sagner S., Radykewicz T., Zenk M. H., Bacher A. Dimethylallyl pyrophosphate is not the committed precursor of isopentenyl pyrophosphate during terpenoid biosynthesis from 1-deoxyxylulose in higher plants. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1309–1314. doi: 10.1073/pnas.96.4.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eisenreich W., Menhard B., Hylands P. J., Zenk M. H., Bacher A. Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6431–6436. doi: 10.1073/pnas.93.13.6431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Flesch G., Rohmer M. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem. 1988 Aug 1;175(2):405–411. doi: 10.1111/j.1432-1033.1988.tb14210.x. [DOI] [PubMed] [Google Scholar]
  4. Fuqua W. C. An improved chloramphenicol resistance gene cassette for site-directed marker replacement mutagenesis. Biotechniques. 1992 Feb;12(2):223–225. [PubMed] [Google Scholar]
  5. Hahn F. M., Hurlburt A. P., Poulter C. D. Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol. 1999 Aug;181(15):4499–4504. doi: 10.1128/jb.181.15.4499-4504.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lange B. M., Wildung M. R., McCaskill D., Croteau R. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2100–2104. doi: 10.1073/pnas.95.5.2100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leyes A. E., Baker J. A., Poulter C. D. Biosynthesis of isoprenoids in Escherichia coli: stereochemistry of the reaction catalyzed by farnesyl diphosphate synthase. Org Lett. 1999 Oct 7;1(7):1071–1073. doi: 10.1021/ol990876e. [DOI] [PubMed] [Google Scholar]
  8. Lichtenthaler H. K., Schwender J., Disch A., Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997 Jan 6;400(3):271–274. doi: 10.1016/s0014-5793(96)01404-4. [DOI] [PubMed] [Google Scholar]
  9. Lichtenthaler Hartmut K. THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):47–65. doi: 10.1146/annurev.arplant.50.1.47. [DOI] [PubMed] [Google Scholar]
  10. Lois L. M., Campos N., Putra S. R., Danielsen K., Rohmer M., Boronat A. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2105–2110. doi: 10.1073/pnas.95.5.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Muraca R. F., Whittick J. S., Daves G. D., Jr, Friis P., Folkers K. Mass spectra of ubiquinones and ubiquinols. J Am Chem Soc. 1967 Mar 15;89(6):1505–1508. doi: 10.1021/ja00982a038. [DOI] [PubMed] [Google Scholar]
  12. Rohmer M., Knani M., Simonin P., Sutter B., Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993 Oct 15;295(Pt 2):517–524. doi: 10.1042/bj2950517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwender J., Müller C., Zeidler J., Lichtenthaler H. K. Cloning and heterologous expression of a cDNA encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase of Arabidopsis thaliana. FEBS Lett. 1999 Jul 16;455(1-2):140–144. doi: 10.1016/s0014-5793(99)00849-2. [DOI] [PubMed] [Google Scholar]
  14. Schwender J., Seemann M., Lichtenthaler H. K., Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J. 1996 May 15;316(Pt 1):73–80. doi: 10.1042/bj3160073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sprenger G. A., Schörken U., Wiegert T., Grolle S., de Graaf A. A., Taylor S. V., Begley T. P., Bringer-Meyer S., Sahm H. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12857–12862. doi: 10.1073/pnas.94.24.12857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takahashi S., Kuzuyama T., Watanabe H., Seto H. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9879–9884. doi: 10.1073/pnas.95.17.9879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES