Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 May 1;347(Pt 3):797–805.

Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site.

P H Kuo 1, R K Nakamoto 1
PMCID: PMC1221018  PMID: 10769185

Abstract

Subunit a of the ATP synthase F(o) sector contains a transmembrane helix that interacts with subunit c and is critical for H(+) transport activity. From a cysteine scan in the region around the essential subunit a residue, Arg-210, we found that the replacement of aGly-213 greatly attenuated ATP hydrolysis, ATP-dependent proton pumping and Delta mu(H)+-dependent ATP synthesis. Various amino acid substitutions caused similar effects, suggesting that functional perturbations were caused by altering the environment or conformation of aArg-210. aG213N, which was particularly severe in effect, was suppressed by two second-site mutations, aL251V and cD61E. These mutations restored efficient coupling; the latter also increased ATP-dependent proton transport rates. These results were consistent with the proposed functional interaction between aArg-210 and cAsp-61, the likely carrier of the transported proton. From Arrhenius analysis of steady-state ATP hydrolytic activity, the transport mutants had large increases in the transition-state enthalpic and entropic parameters. Linear isokinetic relationships demonstrate that the transport mechanism is coupled to the rate-limiting catalytic transition-state step, which we have previously shown to involve the rotation of the gamma subunit in multi-site, co-operative catalysis.

Full Text

The Full Text of this article is available as a PDF (174.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Al-Shawi M. K., Ketchum C. J., Nakamoto R. K. Energy coupling, turnover, and stability of the F0F1 ATP synthase are dependent on the energy of interaction between gamma and beta subunits. J Biol Chem. 1997 Jan 24;272(4):2300–2306. doi: 10.1074/jbc.272.4.2300. [DOI] [PubMed] [Google Scholar]
  3. Al-Shawi M. K., Ketchum C. J., Nakamoto R. K. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway. Biochemistry. 1997 Oct 21;36(42):12961–12969. doi: 10.1021/bi971478r. [DOI] [PubMed] [Google Scholar]
  4. Assadi-Porter F. M., Fillingame R. H. Proton-translocating carboxyl of subunit c of F1Fo H(+)-ATP synthase: the unique environment suggested by the pKa determined by 1H NMR. Biochemistry. 1995 Dec 12;34(49):16186–16193. doi: 10.1021/bi00049a034. [DOI] [PubMed] [Google Scholar]
  5. Boyer P. D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
  6. Cain B. D., Simoni R. D. Proton translocation by the F1F0ATPase of Escherichia coli. Mutagenic analysis of the a subunit. J Biol Chem. 1989 Feb 25;264(6):3292–3300. [PubMed] [Google Scholar]
  7. Deckers-Hebestreit G., Altendorf K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol. 1996;50:791–824. doi: 10.1146/annurev.micro.50.1.791. [DOI] [PubMed] [Google Scholar]
  8. Duncan T. M., Bulygin V. V., Zhou Y., Hutcheon M. L., Cross R. L. Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10964–10968. doi: 10.1073/pnas.92.24.10964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elston T., Wang H., Oster G. Energy transduction in ATP synthase. Nature. 1998 Jan 29;391(6666):510–513. doi: 10.1038/35185. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  11. Fraga D., Hermolin J., Fillingame R. H. Transmembrane helix-helix interactions in F0 suggested by suppressor mutations to Ala24-->Asp/Asp61-->Gly mutant of ATP synthase subunit. J Biol Chem. 1994 Jan 28;269(4):2562–2567. [PubMed] [Google Scholar]
  12. Futai M., Sternweis P. C., Heppel L. A. Purification and properties of reconstitutively active and inactive adenosinetriphosphatase from Escherichia coli. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2725–2729. doi: 10.1073/pnas.71.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gardner J. L., Cain B. D. Amino acid substitutions in the a subunit affect the epsilon subunit of F1F0 ATP synthase from Escherichia coli. Arch Biochem Biophys. 1999 Jan 15;361(2):302–308. doi: 10.1006/abbi.1998.0995. [DOI] [PubMed] [Google Scholar]
  14. Girvin M. E., Rastogi V. K., Abildgaard F., Markley J. L., Fillingame R. H. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry. 1998 Jun 23;37(25):8817–8824. doi: 10.1021/bi980511m. [DOI] [PubMed] [Google Scholar]
  15. Groth G., Walker J. E. Model of the c-subunit oligomer in the membrane domain of F-ATPases. FEBS Lett. 1997 Jun 30;410(2-3):117–123. doi: 10.1016/s0014-5793(97)00529-2. [DOI] [PubMed] [Google Scholar]
  16. Hartzog P. E., Cain B. D. Mutagenic analysis of the a subunit of the F1F0 ATP synthase in Escherichia coli: Gln-252 through Tyr-263. J Bacteriol. 1993 Mar;175(5):1337–1343. doi: 10.1128/jb.175.5.1337-1343.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartzog P. E., Cain B. D. Second-site suppressor mutations at glycine 218 and histidine 245 in the alpha subunit of F1F0 ATP synthase in Escherichia coli. J Biol Chem. 1994 Dec 23;269(51):32313–32317. [PubMed] [Google Scholar]
  18. Hatch L. P., Cox G. B., Howitt S. M. The essential arginine residue at position 210 in the alpha subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J Biol Chem. 1995 Dec 8;270(49):29407–29412. doi: 10.1074/jbc.270.49.29407. [DOI] [PubMed] [Google Scholar]
  19. Inesi G., Lewis D., Nikic D., Hussain A., Kirtley M. E. Long-range intramolecular linked functions in the calcium transport ATPase. Adv Enzymol Relat Areas Mol Biol. 1992;65:185–215. doi: 10.1002/9780470123119.ch5. [DOI] [PubMed] [Google Scholar]
  20. Jencks W. P. The utilization of binding energy in coupled vectorial processes. Adv Enzymol Relat Areas Mol Biol. 1980;51:75–106. doi: 10.1002/9780470122969.ch2. [DOI] [PubMed] [Google Scholar]
  21. Jiang W., Fillingame R. H. Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6607–6612. doi: 10.1073/pnas.95.12.6607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
  23. Kaim G., Dimroth P. A triple mutation in the a subunit of the Escherichia coli/Propionigenium modestum F1Fo ATPase hybrid causes a switch from Na+ stimulation to Na+ inhibition. Biochemistry. 1998 Mar 31;37(13):4626–4634. doi: 10.1021/bi973022f. [DOI] [PubMed] [Google Scholar]
  24. Kaim G., Matthey U., Dimroth P. Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases. EMBO J. 1998 Feb 2;17(3):688–695. doi: 10.1093/emboj/17.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ketchum C. J., Al-Shawi M. K., Nakamoto R. K. Intergenic suppression of the gammaM23K uncoupling mutation in F0F1 ATP synthase by betaGlu-381 substitutions: the role of the beta380DELSEED386 segment in energy coupling. Biochem J. 1998 Mar 1;330(Pt 2):707–712. doi: 10.1042/bj3300707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ketchum C. J., Nakamoto R. K. A mutation in the Escherichia coli F0F1-ATP synthase rotor, gammaE208K, perturbs conformational coupling between transport and catalysis. J Biol Chem. 1998 Aug 28;273(35):22292–22297. doi: 10.1074/jbc.273.35.22292. [DOI] [PubMed] [Google Scholar]
  27. Klionsky D. J., Brusilow W. S., Simoni R. D. In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol. 1984 Dec;160(3):1055–1060. doi: 10.1128/jb.160.3.1055-1060.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kuo P. H., Ketchum C. J., Nakamoto R. K. Stability and functionality of cysteine-less F(0)F1 ATP synthase from Escherichia coli. FEBS Lett. 1998 Apr 17;426(2):217–220. doi: 10.1016/s0014-5793(98)00337-8. [DOI] [PubMed] [Google Scholar]
  29. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  30. Lightowlers R. N., Howitt S. M., Hatch L., Gibson F., Cox G. B. The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta. 1987 Dec 17;894(3):399–406. doi: 10.1016/0005-2728(87)90118-6. [DOI] [PubMed] [Google Scholar]
  31. Lightowlers R. N., Howitt S. M., Hatch L., Gibson F., Cox G. The proton pore in the Escherichia coli F0F1-ATPase: substitution of glutamate by glutamine at position 219 of the alpha-subunit prevents F0-mediated proton permeability. Biochim Biophys Acta. 1988 Apr 22;933(2):241–248. doi: 10.1016/0005-2728(88)90031-x. [DOI] [PubMed] [Google Scholar]
  32. Long J. C., Wang S., Vik S. B. Membrane topology of subunit a of the F1F0 ATP synthase as determined by labeling of unique cysteine residues. J Biol Chem. 1998 Jun 26;273(26):16235–16240. doi: 10.1074/jbc.273.26.16235. [DOI] [PubMed] [Google Scholar]
  33. Miller M. J., Oldenburg M., Fillingame R. H. The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4900–4904. doi: 10.1073/pnas.87.13.4900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moriyama Y., Iwamoto A., Hanada H., Maeda M., Futai M. One-step purification of Escherichia coli H(+)-ATPase (F0F1) and its reconstitution into liposomes with neurotransmitter transporters. J Biol Chem. 1991 Nov 25;266(33):22141–22146. [PubMed] [Google Scholar]
  35. Nakamoto R. K., Ketchum C. J., al-Shawi M. K. Rotational coupling in the F0F1 ATP synthase. Annu Rev Biophys Biomol Struct. 1999;28:205–234. doi: 10.1146/annurev.biophys.28.1.205. [DOI] [PubMed] [Google Scholar]
  36. Nakamoto R. K., al-Shawi M. K., Futai M. The ATP synthase gamma subunit. Suppressor mutagenesis reveals three helical regions involved in energy coupling. J Biol Chem. 1995 Jun 9;270(23):14042–14046. doi: 10.1074/jbc.270.23.14042. [DOI] [PubMed] [Google Scholar]
  37. Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
  38. Rastogi V. K., Girvin M. E. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature. 1999 Nov 18;402(6759):263–268. doi: 10.1038/46224. [DOI] [PubMed] [Google Scholar]
  39. Sabbert D., Engelbrecht S., Junge W. Intersubunit rotation in active F-ATPase. Nature. 1996 Jun 13;381(6583):623–625. doi: 10.1038/381623a0. [DOI] [PubMed] [Google Scholar]
  40. Sambongi Y., Iko Y., Tanabe M., Omote H., Iwamoto-Kihara A., Ueda I., Yanagida T., Wada Y., Futai M. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science. 1999 Nov 26;286(5445):1722–1724. doi: 10.1126/science.286.5445.1722. [DOI] [PubMed] [Google Scholar]
  41. Stock D., Leslie A. G., Walker J. E. Molecular architecture of the rotary motor in ATP synthase. Science. 1999 Nov 26;286(5445):1700–1705. doi: 10.1126/science.286.5445.1700. [DOI] [PubMed] [Google Scholar]
  42. Tanford C. Mechanism of free energy coupling in active transport. Annu Rev Biochem. 1983;52:379–409. doi: 10.1146/annurev.bi.52.070183.002115. [DOI] [PubMed] [Google Scholar]
  43. Valiyaveetil F. I., Fillingame R. H. On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem. 1997 Dec 19;272(51):32635–32641. doi: 10.1074/jbc.272.51.32635. [DOI] [PubMed] [Google Scholar]
  44. Valiyaveetil F. I., Fillingame R. H. Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J Biol Chem. 1998 Jun 26;273(26):16241–16247. doi: 10.1074/jbc.273.26.16241. [DOI] [PubMed] [Google Scholar]
  45. Vik S. B., Antonio B. J. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem. 1994 Dec 2;269(48):30364–30369. [PubMed] [Google Scholar]
  46. Weber J., Senior A. E. Catalytic mechanism of F1-ATPase. Biochim Biophys Acta. 1997 Mar 28;1319(1):19–58. doi: 10.1016/s0005-2728(96)00121-1. [DOI] [PubMed] [Google Scholar]
  47. Yamada H., Moriyama Y., Maeda M., Futai M. Transmembrane topology of Escherichia coli H(+)-ATPase (ATP synthase) subunit a. FEBS Lett. 1996 Jul 15;390(1):34–38. doi: 10.1016/0014-5793(96)00621-7. [DOI] [PubMed] [Google Scholar]
  48. Yasuda R., Noji H., Kinosita K., Jr, Yoshida M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell. 1998 Jun 26;93(7):1117–1124. doi: 10.1016/s0092-8674(00)81456-7. [DOI] [PubMed] [Google Scholar]
  49. Zhang Y., Fillingame R. H. Changing the ion binding specificity of the Escherichia coli H(+)-transporting ATP synthase by directed mutagenesis of subunit c. J Biol Chem. 1995 Jan 6;270(1):87–93. doi: 10.1074/jbc.270.1.87. [DOI] [PubMed] [Google Scholar]
  50. Zhang Y., Fillingame R. H. Essential aspartate in subunit c of F1F0 ATP synthase. Effect of position 61 substitutions in helix-2 on function of Asp24 in helix-1. J Biol Chem. 1994 Feb 18;269(7):5473–5479. [PubMed] [Google Scholar]
  51. Zhang Y., Oldenburg M., Fillingame R. H. Suppressor mutations in F1 subunit epsilon recouple ATP-driven H+ translocation in uncoupled Q42E subunit c mutant of Escherichia coli F1F0 ATP synthase. J Biol Chem. 1994 Apr 8;269(14):10221–10224. [PubMed] [Google Scholar]
  52. Zhou Y., Duncan T. M., Bulygin V. V., Hutcheon M. L., Cross R. L. ATP hydrolysis by membrane-bound Escherichia coli F0F1 causes rotation of the gamma subunit relative to the beta subunits. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):96–100. doi: 10.1016/0005-2728(96)00056-4. [DOI] [PubMed] [Google Scholar]
  53. al-Shawi M. K., Parsonage D., Senior A. E. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. J Biol Chem. 1990 Mar 15;265(8):4402–4410. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES