Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jun 1;348(Pt 2):465–471.

Action pattern and substrate specificity of the hyaluronan lyase from group B streptococci.

J R Baker 1, D G Pritchard 1
PMCID: PMC1221087  PMID: 10816443

Abstract

The hyaluronan lyase of group B streptococci rapidly cleaves hyaluronan by an elimination mechanism to yield the unsaturated disaccharide 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose. Additionally, it has been shown that the enzyme has limited specificity for achondroitin sulphate and cleaves the chain at unsulphated sites [Baker,Yu, Morrison, Averett and Pritchard (1997) Biochem. J. 327,65-71]. In the present extension of that study it was found that 6-sulphated regions of chondroitin sulphate are also susceptible to cleavage by this hyaluronan lyase. Of the four 6- and/or 4-sulphated tetrasaccharides which can be isolated from testicular hyaluronidase digests of chondroitin sulphate, only those two tetrasaccharides with a6-sulphated disaccharide at the reducing end were cleaved. From thisand other data, a model is proposed for the cleavage specificity of hyaluronan lyase on a chondroitin sulphate. Evidence is presented in support of an action pattern for hyaluronan lyase which involves aninitial random endolytic cleavage followed by rapid exolytic and processive release of unsaturated disaccharide. Since the on lyoligosaccharides which tend to accumulate in near-complete digests of hyaluronan are unsaturated, it is argued that the processive cleavage occurs from the non-reducing to the reducing end of a hyaluronan chain.This detailed knowledge of substrate specificity contributes to our understanding of the enzyme's role in Group B streptococcal pathogenesis. In addition, the hyaluronan lyase may find application in sequence studies of chondroitin sulphates.

Full Text

The Full Text of this article is available as a PDF (131.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviezer D., Hecht D., Safran M., Eisinger M., David G., Yayon A. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell. 1994 Dec 16;79(6):1005–1013. doi: 10.1016/0092-8674(94)90031-0. [DOI] [PubMed] [Google Scholar]
  2. Baker J. R., Yu H., Morrison K., Averett W. F., Pritchard D. G. Specificity of the hyaluronate lyase of group-B streptococcus toward unsulphated regions of chondroitin sulphate. Biochem J. 1997 Oct 1;327(Pt 1):65–71. doi: 10.1042/bj3270065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carney S. L., Osborne D. J. The separation of chondroitin sulfate disaccharides and hyaluronan oligosaccharides by capillary zone electrophoresis. Anal Biochem. 1991 May 15;195(1):132–140. doi: 10.1016/0003-2697(91)90308-g. [DOI] [PubMed] [Google Scholar]
  4. Chai W., Kogelberg H., Lawson A. M. Generation and structural characterization of a range of unmodified chondroitin sulfate oligosaccharide fragments. Anal Biochem. 1996 May 15;237(1):88–102. doi: 10.1006/abio.1996.0205. [DOI] [PubMed] [Google Scholar]
  5. Cheng F., Yoshida K., Heinegård D., Fransson L. A. A new method for sequence analysis of glycosaminoglycans from heavily substituted proteoglycans reveals non-random positioning of 4- and 6-O-sulphated N-acetylgalactosamine in aggrecan-derived chondroitin sulphate. Glycobiology. 1992 Dec;2(6):553–561. doi: 10.1093/glycob/2.6.553. [DOI] [PubMed] [Google Scholar]
  6. Ernst S., Rhomberg A. J., Biemann K., Sasisekharan R. Direct evidence for a predominantly exolytic processive mechanism for depolymerization of heparin-like glycosaminoglycans by heparinase I. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4182–4187. doi: 10.1073/pnas.95.8.4182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hauge M., Jespersgaard C., Poulsen K., Kilian M. Population structure of Streptococcus agalactiae reveals an association between specific evolutionary lineages and putative virulence factors but not disease. Infect Immun. 1996 Mar;64(3):919–925. doi: 10.1128/iai.64.3.919-925.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jandik K. A., Gu K., Linhardt R. J. Action pattern of polysaccharide lyases on glycosaminoglycans. Glycobiology. 1994 Jun;4(3):289–296. doi: 10.1093/glycob/4.3.289. [DOI] [PubMed] [Google Scholar]
  9. Park Y., Cho S., Linhardt R. J. Exploration of the action pattern of Streptomyces hyaluronate lyase using high-resolution capillary electrophoresis. Biochim Biophys Acta. 1997 Feb 8;1337(2):217–226. doi: 10.1016/s0167-4838(96)00167-7. [DOI] [PubMed] [Google Scholar]
  10. Pritchard D. G., Lin B., Willingham T. R., Baker J. R. Characterization of the group B streptococcal hyaluronate lyase. Arch Biochem Biophys. 1994 Dec;315(2):431–437. doi: 10.1006/abbi.1994.1521. [DOI] [PubMed] [Google Scholar]
  11. Rhomberg A. J., Ernst S., Sasisekharan R., Biemann K. Mass spectrometric and capillary electrophoretic investigation of the enzymatic degradation of heparin-like glycosaminoglycans. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4176–4181. doi: 10.1073/pnas.95.8.4176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Venkataraman G., Shriver Z., Raman R., Sasisekharan R. Sequencing complex polysaccharides. Science. 1999 Oct 15;286(5439):537–542. doi: 10.1126/science.286.5439.537. [DOI] [PubMed] [Google Scholar]
  13. Zangwill K. M., Schuchat A., Wenger J. D. Group B streptococcal disease in the United States, 1990: report from a multistate active surveillance system. MMWR CDC Surveill Summ. 1992 Nov 20;41(6):25–32. [PubMed] [Google Scholar]
  14. delCardayré S. B., Raines R. T. Structural determinants of enzymatic processivity. Biochemistry. 1994 May 24;33(20):6031–6037. doi: 10.1021/bi00186a001. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES