Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Jul 15;349(Pt 2):559–566. doi: 10.1042/0264-6021:3490559

The human breast carcinoma cell line HBL-100 acquires exogenous cholesterol from high-density lipoprotein via CLA-1 (CD-36 and LIMPII analogous 1)-mediated selective cholesteryl ester uptake.

P J Pussinen 1, B Karten 1, A Wintersperger 1, H Reicher 1, M McLean 1, E Malle 1, W Sattler 1
PMCID: PMC1221179  PMID: 10880355

Abstract

Aberrant cell proliferation is one of the hallmarks of carcinogenesis, and cholesterol is thought to play an important role during cell proliferation and cancer progression. In the present study we examined the pathways that could contribute to enhanced proliferation rates of HBL-100 cells in the presence of apolipoprotein E-depleted high-density lipoprotein subclass 3 (HDL(3)). When HBL-100 cells were cultivated in the presence of HDL(3) (up to 200 microg/ml HDL(3) protein), the growth rates and cellular cholesterol content were directly related to the concentrations of HDL(3) in the culture medium. In principle, two pathways can contribute to cholesterol/cholesteryl ester (CE) uptake from HDL(3), (i) holoparticle- and (ii) scavenger-receptor BI (SR-BI)-mediated selective uptake of HDL(3)-associated CEs. Northern- and Western-blot analyses revealed the expression of CLA-1 (CD-36 and LIMPII analogous 1), the human homologue of the rodent HDL receptor SR-BI. In line with CLA-1 expression, selective uptake of HDL(3)-CEs exceeded HDL(3)-holoparticle uptake between 12- and 58-fold. Competition experiments demonstrated that CLA-1 ligands (oxidized HDL, oxidized and acetylated low-density lipoprotein and phosphatidylserine) inhibited selective HDL(3)-CE uptake. In line with the ligand-binding specificity of CLA-1, phosphatidylcholine did not compete for selective HDL(3)-CE uptake. Selective uptake was regulated by the availability of exogenous cholesterol and PMA, but not by adrenocorticotropic hormone. HPLC analysis revealed that a substantial part of HDL(3)-CE, which was taken up selectively, was subjected to intracellular hydrolysis. A potential candidate facilitating extralysosomal hydrolysis of HDL(3)-CE is hormone-sensitive lipase, an enzyme which was identified in HBL-100 cells by Western blots. Our findings demonstrate that HBL-100 cells are able to acquire HDL-CEs via selective uptake. Subsequent partial hydrolysis by hormone-sensitive lipase could provide 'free' cholesterol that is available for the synthesis of cellular membranes during proliferation of cancer cells.

Full Text

The Full Text of this article is available as a PDF (179.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acton S. L., Scherer P. E., Lodish H. F., Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem. 1994 Aug 19;269(33):21003–21009. [PubMed] [Google Scholar]
  2. Acton S., Rigotti A., Landschulz K. T., Xu S., Hobbs H. H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996 Jan 26;271(5248):518–520. doi: 10.1126/science.271.5248.518. [DOI] [PubMed] [Google Scholar]
  3. Azhar S., Nomoto A., Leers-Sucheta S., Reaven E. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res. 1998 Aug;39(8):1616–1628. [PubMed] [Google Scholar]
  4. Babitt J., Trigatti B., Rigotti A., Smart E. J., Anderson R. G., Xu S., Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem. 1997 May 16;272(20):13242–13249. doi: 10.1074/jbc.272.20.13242. [DOI] [PubMed] [Google Scholar]
  5. Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyd N. F., McGuire V. Evidence of association between plasma high-density lipoprotein cholesterol and risk factors for breast cancer. J Natl Cancer Inst. 1990 Mar 21;82(6):460–468. doi: 10.1093/jnci/82.6.460. [DOI] [PubMed] [Google Scholar]
  7. Calvo D., Dopazo J., Vega M. A. The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family: cellular distribution, chromosomal location, and genetic evolution. Genomics. 1995 Jan 1;25(1):100–106. doi: 10.1016/0888-7543(95)80114-2. [DOI] [PubMed] [Google Scholar]
  8. Calvo D., Gómez-Coronado D., Lasunción M. A., Vega M. A. CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2341–2349. doi: 10.1161/01.atv.17.11.2341. [DOI] [PubMed] [Google Scholar]
  9. Calvo D., Vega M. A. Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family. J Biol Chem. 1993 Sep 5;268(25):18929–18935. [PubMed] [Google Scholar]
  10. Chajès V., Sattler W., Stranzl A., Kostner G. M. Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Breast Cancer Res Treat. 1995 Jun;34(3):199–212. doi: 10.1007/BF00689711. [DOI] [PubMed] [Google Scholar]
  11. Coleman P. S., Chen L. C., Sepp-Lorenzino L. Cholesterol metabolism and tumor cell proliferation. Subcell Biochem. 1997;28:363–435. doi: 10.1007/978-1-4615-5901-6_13. [DOI] [PubMed] [Google Scholar]
  12. Ferraroni M., Gerber M., Decarli A., Richardson S., Marubini E., Crastes de Paulet P., Crastes de Paulet A., Pujol H. HDL-cholesterol and breast cancer: a joint study in northern Italy and southern France. Int J Epidemiol. 1993 Oct;22(5):772–780. doi: 10.1093/ije/22.5.772. [DOI] [PubMed] [Google Scholar]
  13. Fidge N. H. High density lipoprotein receptors, binding proteins, and ligands. J Lipid Res. 1999 Feb;40(2):187–201. [PubMed] [Google Scholar]
  14. Firestone R. A. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem. 1994 Mar-Apr;5(2):105–113. doi: 10.1021/bc00026a002. [DOI] [PubMed] [Google Scholar]
  15. Fluiter K., Sattler W., De Beer M. C., Connell P. M., van der Westhuyzen D. R., van Berkel T. J. Scavenger receptor BI mediates the selective uptake of oxidized cholesterol esters by rat liver. J Biol Chem. 1999 Mar 26;274(13):8893–8899. doi: 10.1074/jbc.274.13.8893. [DOI] [PubMed] [Google Scholar]
  16. Fluiter K., van der Westhuijzen D. R., van Berkel T. J. In vivo regulation of scavenger receptor BI and the selective uptake of high density lipoprotein cholesteryl esters in rat liver parenchymal and Kupffer cells. J Biol Chem. 1998 Apr 3;273(14):8434–8438. doi: 10.1074/jbc.273.14.8434. [DOI] [PubMed] [Google Scholar]
  17. Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
  18. Hardwick M., Fertikh D., Culty M., Li H., Vidic B., Papadopoulos V. Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. Cancer Res. 1999 Feb 15;59(4):831–842. [PubMed] [Google Scholar]
  19. Hatzopoulos A. K., Rigotti A., Rosenberg R. D., Krieger M. Temporal and spatial pattern of expression of the HDL receptor SR-BI during murine embryogenesis. J Lipid Res. 1998 Mar;39(3):495–508. [PubMed] [Google Scholar]
  20. Holm C., Belfrage P., Fredrikson G. Human adipose tissue hormone-sensitive lipase: identification and comparison with other species. Biochim Biophys Acta. 1989 Nov 28;1006(2):193–197. doi: 10.1016/0005-2760(89)90195-1. [DOI] [PubMed] [Google Scholar]
  21. Holm C., Belfrage P., Fredrikson G. Immunological evidence for the presence of hormone-sensitive lipase in rat tissues other than adipose tissue. Biochem Biophys Res Commun. 1987 Oct 14;148(1):99–105. doi: 10.1016/0006-291x(87)91081-3. [DOI] [PubMed] [Google Scholar]
  22. Hough J. L., Zilversmit D. B. Comparison of various methods for in vitro cholesteryl ester labeling of lipoproteins from hypercholesterolemic rabbits. Biochim Biophys Acta. 1984 Mar 7;792(3):338–347. doi: 10.1016/0005-2760(84)90202-9. [DOI] [PubMed] [Google Scholar]
  23. Karten B., Beisiegel U., Gercken G., Kontush A. Mechanisms of lipid peroxidation in human blood plasma: a kinetic approach. Chem Phys Lipids. 1997 Aug 29;88(2):83–96. doi: 10.1016/s0009-3084(97)00038-8. [DOI] [PubMed] [Google Scholar]
  24. Karten B., Boechzelt H., Abuja P. M., Mittelbach M., Sattler W. Macrophage-enhanced formation of cholesteryl ester-core aldehydes during oxidation of low density lipoprotein. J Lipid Res. 1999 Jul;40(7):1240–1253. [PubMed] [Google Scholar]
  25. Kozarsky K. F., Donahee M. H., Rigotti A., Iqbal S. N., Edelman E. R., Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997 May 22;387(6631):414–417. doi: 10.1038/387414a0. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lopez D., McLean M. P. Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinology. 1999 Dec;140(12):5669–5681. doi: 10.1210/endo.140.12.7220. [DOI] [PubMed] [Google Scholar]
  28. McLean M. P., Sandhoff T. W. Expression and hormonal regulation of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I messenger ribonucleic acid in the rat ovary. Endocrine. 1998 Dec;9(3):243–252. doi: 10.1385/ENDO:9:3:243. [DOI] [PubMed] [Google Scholar]
  29. Moorman P. G., Hulka B. S., Hiatt R. A., Krieger N., Newman B., Vogelman J. H., Orentreich N. Association between high-density lipoprotein cholesterol and breast cancer varies by menopausal status. Cancer Epidemiol Biomarkers Prev. 1998 Jun;7(6):483–488. [PubMed] [Google Scholar]
  30. Murao K., Terpstra V., Green S. R., Kondratenko N., Steinberg D., Quehenberger O. Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem. 1997 Jul 11;272(28):17551–17557. doi: 10.1074/jbc.272.28.17551. [DOI] [PubMed] [Google Scholar]
  31. Osterlund T., Danielsson B., Degerman E., Contreras J. A., Edgren G., Davis R. C., Schotz M. C., Holm C. Domain-structure analysis of recombinant rat hormone-sensitive lipase. Biochem J. 1996 Oct 15;319(Pt 2):411–420. doi: 10.1042/bj3190411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Osuga J., Ishibashi S., Oka T., Yagyu H., Tozawa R., Fujimoto A., Shionoiri F., Yahagi N., Kraemer F. B., Tsutsumi O. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):787–792. doi: 10.1073/pnas.97.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pörn M. I., Akerman K. E., Slotte J. P. High-density lipoproteins induce a rapid and transient release of Ca2+ in cultured fibroblasts. Biochem J. 1991 Oct 1;279(Pt 1):29–33. doi: 10.1042/bj2790029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rensen P. C., Schiffelers R. M., Versluis A. J., Bijsterbosch M. K., Van Kuijk-Meuwissen M. E., Van Berkel T. J. Human recombinant apolipoprotein E-enriched liposomes can mimic low-density lipoproteins as carriers for the site-specific delivery of antitumor agents. Mol Pharmacol. 1997 Sep;52(3):445–455. doi: 10.1124/mol.52.3.445. [DOI] [PubMed] [Google Scholar]
  35. Rigotti A., Edelman E. R., Seifert P., Iqbal S. N., DeMattos R. B., Temel R. E., Krieger M., Williams D. L. Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. J Biol Chem. 1996 Dec 27;271(52):33545–33549. doi: 10.1074/jbc.271.52.33545. [DOI] [PubMed] [Google Scholar]
  36. Rigotti A., Trigatti B. L., Penman M., Rayburn H., Herz J., Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12610–12615. doi: 10.1073/pnas.94.23.12610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rigotti A., Trigatti B., Babitt J., Penman M., Xu S., Krieger M. Scavenger receptor BI--a cell surface receptor for high density lipoprotein. Curr Opin Lipidol. 1997 Jun;8(3):181–188. doi: 10.1097/00041433-199706000-00009. [DOI] [PubMed] [Google Scholar]
  38. Rothblat G. H., de la Llera-Moya M., Atger V., Kellner-Weibel G., Williams D. L., Phillips M. C. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 1999 May;40(5):781–796. [PubMed] [Google Scholar]
  39. Rotheneder M., Kostner G. M. Effects of low- and high-density lipoproteins on the proliferation of human breast cancer cells in vitro: differences between hormone-dependent and hormone-independent cell lines. Int J Cancer. 1989 May 15;43(5):875–879. doi: 10.1002/ijc.2910430523. [DOI] [PubMed] [Google Scholar]
  40. Samadi-Baboli M., Favre G., Canal P., Soula G. Low density lipoprotein for cytotoxic drug targeting: improved activity of elliptinium derivative against B16 melanoma in mice. Br J Cancer. 1993 Aug;68(2):319–326. doi: 10.1038/bjc.1993.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sattler W., Leis H. J., Kostner G. M., Malle E. Quantification of 7-dehydrocholesterol in plasma and amniotic fluid by liquid chromatography/particle beam-mass spectrometry as a biochemical diagnostic marker for the Smith-Lemli-Opitz syndrome. Rapid Commun Mass Spectrom. 1995;9(13):1288–1292. doi: 10.1002/rcm.1290091313. [DOI] [PubMed] [Google Scholar]
  42. Sattler W., Mohr D., Stocker R. Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol. 1994;233:469–489. doi: 10.1016/s0076-6879(94)33053-0. [DOI] [PubMed] [Google Scholar]
  43. Sattler W., Stocker R. Greater selective uptake by Hep G2 cells of high-density lipoprotein cholesteryl ester hydroperoxides than of unoxidized cholesteryl esters. Biochem J. 1993 Sep 15;294(Pt 3):771–778. doi: 10.1042/bj2940771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schouten D., van der Kooij M., Muller J., Pieters M. N., Bijsterbosch M. K., van Berkel T. J. Development of lipoprotein-like lipid particles for drug targeting: neo-high density lipoproteins. Mol Pharmacol. 1993 Aug;44(2):486–492. [PubMed] [Google Scholar]
  45. Sinn H. J., Schrenk H. H., Friedrich E. A., Via D. P., Dresel H. A. Radioiodination of proteins and lipoproteins using N-bromosuccinimide as oxidizing agent. Anal Biochem. 1988 Apr;170(1):186–192. doi: 10.1016/0003-2697(88)90107-8. [DOI] [PubMed] [Google Scholar]
  46. Sparrow C. P., Pittman R. C. Cholesterol esters selectively taken up from high-density lipoproteins are hydrolyzed extralysosomally. Biochim Biophys Acta. 1990 Apr 2;1043(2):203–210. doi: 10.1016/0005-2760(90)90297-b. [DOI] [PubMed] [Google Scholar]
  47. Stein O., Stein Y. Atheroprotective mechanisms of HDL. Atherosclerosis. 1999 Jun;144(2):285–301. doi: 10.1016/s0021-9150(99)00065-9. [DOI] [PubMed] [Google Scholar]
  48. Stranzl A., Schmidt H., Winkler R., Kostner G. M. Low-density lipoprotein receptor mRNA in human breast cancer cells: influence by PKC modulators. Breast Cancer Res Treat. 1997 Feb;42(3):195–205. doi: 10.1023/a:1005754026205. [DOI] [PubMed] [Google Scholar]
  49. Swarnakar S., Reyland M. E., Deng J., Azhar S., Williams D. L. Selective uptake of low density lipoprotein-cholesteryl ester is enhanced by inducible apolipoprotein E expression in cultured mouse adrenocortical cells. J Biol Chem. 1998 May 15;273(20):12140–12147. doi: 10.1074/jbc.273.20.12140. [DOI] [PubMed] [Google Scholar]
  50. Swarnakar S., Temel R. E., Connelly M. A., Azhar S., Williams D. L. Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester. J Biol Chem. 1999 Oct 15;274(42):29733–29739. doi: 10.1074/jbc.274.42.29733. [DOI] [PubMed] [Google Scholar]
  51. Trigatti B., Rayburn H., Viñals M., Braun A., Miettinen H., Penman M., Hertz M., Schrenzel M., Amigo L., Rigotti A. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9322–9327. doi: 10.1073/pnas.96.16.9322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Varban M. L., Rinninger F., Wang N., Fairchild-Huntress V., Dunmore J. H., Fang Q., Gosselin M. L., Dixon K. L., Deeds J. D., Acton S. L. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4619–4624. doi: 10.1073/pnas.95.8.4619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Walter M., Reinecke H., Nofer J. R., Seedorf U., Assmann G. HDL3 stimulates multiple signaling pathways in human skin fibroblasts. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):1975–1986. doi: 10.1161/01.atv.15.11.1975. [DOI] [PubMed] [Google Scholar]
  54. Wang N., Weng W., Breslow J. L., Tall A. R. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J Biol Chem. 1996 Aug 30;271(35):21001–21004. doi: 10.1074/jbc.271.35.21001. [DOI] [PubMed] [Google Scholar]
  55. Webb N. R., Connell P. M., Graf G. A., Smart E. J., de Villiers W. J., de Beer F. C., van der Westhuyzen D. R. SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J Biol Chem. 1998 Jun 12;273(24):15241–15248. doi: 10.1074/jbc.273.24.15241. [DOI] [PubMed] [Google Scholar]
  56. Webb N. R., de Villiers W. J., Connell P. M., de Beer F. C., van der Westhuyzen D. R. Alternative forms of the scavenger receptor BI (SR-BI). J Lipid Res. 1997 Jul;38(7):1490–1495. [PubMed] [Google Scholar]
  57. Williams D. L., Connelly M. A., Temel R. E., Swarnakar S., Phillips M. C., de la Llera-Moya M., Rothblat G. H. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol. 1999 Aug;10(4):329–339. doi: 10.1097/00041433-199908000-00007. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES