Abstract
We recently identified a novel adaptor protein, termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1), that possesses a Src homology (SH2) domain and a pleckstrin homology (PH) domain. DAPP1 exhibits a high-affinity interaction with PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2), which bind to the PH domain. In the present study we show that when DAPP1 is expressed in HEK-293 cells, the agonists insulin, insulin-like growth factor-1 and epidermal growth factor induce the phosphorylation of DAPP1 at Tyr(139). Treatment of cells with phosphoinositide 3-kinase (PI 3-kinase) inhibitors or expression of a dominant-negative PI 3-kinase prevent phosphorylation of DAPP1 at Tyr(139), and a PH-domain mutant of DAPP1, which does not interact with PtdIns(3,4,5)P(3) or PtdIns(3,4)P(2), is not phosphorylated at Tyr(139) following agonist stimulation of cells. Overexpression of a constitutively active form of PI 3-kinase induced the phosphorylation of DAPP1 in unstimulated cells. We demonstrated that Tyr(139) of DAPP1 is likely to be phosphorylated in vivo by a Src-family tyrosine kinase, since the specific Src-family inhibitor, PP2, but not an inactive variant of this drug, PP3, prevented the agonist-induced tyrosine phosphorylation of DAPP1. Src, Lyn and Lck tyrosine kinases phosphorylate DAPP1 at Tyr(139) in vitro at similar rates in the presence or absence of PtdIns(3,4,5)P(3), and overexpression of these kinases in HEK-293 cells induces the phosphorylation of Tyr(139). These findings indicate that, following activation of PI 3-kinases, PtdIns(3,4,5)P(3) or PtdIns(3,4)P(2) bind to DAPP1, recruiting it to the plasma membrane where it becomes phosphorylated at Tyr(139) by a Src-family tyrosine kinase.
Full Text
The Full Text of this article is available as a PDF (236.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed] [Google Scholar]
- Alessi D. R., Cohen P., Ashworth A., Cowley S., Leevers S. J., Marshall C. J. Assay and expression of mitogen-activated protein kinase, MAP kinase kinase, and Raf. Methods Enzymol. 1995;255:279–290. doi: 10.1016/s0076-6879(95)55031-3. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Deak M., Casamayor A., Caudwell F. B., Morrice N., Norman D. G., Gaffney P., Reese C. B., MacDougall C. N., Harbison D. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997 Oct 1;7(10):776–789. doi: 10.1016/s0960-9822(06)00336-8. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Downes C. P. The role of PI 3-kinase in insulin action. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):151–164. doi: 10.1016/s0005-2760(98)00133-7. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
- Belham C., Wu S., Avruch J. Intracellular signalling: PDK1--a kinase at the hub of things. Curr Biol. 1999 Feb 11;9(3):R93–R96. doi: 10.1016/s0960-9822(99)80058-x. [DOI] [PubMed] [Google Scholar]
- Bolen J. B., Rowley R. B., Spana C., Tsygankov A. Y. The Src family of tyrosine protein kinases in hemopoietic signal transduction. FASEB J. 1992 Dec;6(15):3403–3409. doi: 10.1096/fasebj.6.15.1281458. [DOI] [PubMed] [Google Scholar]
- Cheng H. C., Nishio H., Hatase O., Ralph S., Wang J. H. A synthetic peptide derived from p34cdc2 is a specific and efficient substrate of src-family tyrosine kinases. J Biol Chem. 1992 May 5;267(13):9248–9256. [PubMed] [Google Scholar]
- Coffer P. J., Jin J., Woodgett J. R. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J. 1998 Oct 1;335(Pt 1):1–13. doi: 10.1042/bj3350001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dowler S., Currie R. A., Downes C. P., Alessi D. R. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 1999 Aug 15;342(Pt 1):7–12. [PMC free article] [PubMed] [Google Scholar]
- Han J., Luby-Phelps K., Das B., Shu X., Xia Y., Mosteller R. D., Krishna U. M., Falck J. R., White M. A., Broek D. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science. 1998 Jan 23;279(5350):558–560. doi: 10.1126/science.279.5350.558. [DOI] [PubMed] [Google Scholar]
- Hanke J. H., Gardner J. P., Dow R. L., Changelian P. S., Brissette W. H., Weringer E. J., Pollok B. A., Connelly P. A. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem. 1996 Jan 12;271(2):695–701. doi: 10.1074/jbc.271.2.695. [DOI] [PubMed] [Google Scholar]
- Isakoff S. J., Cardozo T., Andreev J., Li Z., Ferguson K. M., Abagyan R., Lemmon M. A., Aronheim A., Skolnik E. Y. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 1998 Sep 15;17(18):5374–5387. doi: 10.1093/emboj/17.18.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klarlund J. K., Rameh L. E., Cantley L. C., Buxton J. M., Holik J. J., Sakelis C., Patki V., Corvera S., Czech M. P. Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 Jan 23;273(4):1859–1862. doi: 10.1074/jbc.273.4.1859. [DOI] [PubMed] [Google Scholar]
- Li Z., Wahl M. I., Eguinoa A., Stephens L. R., Hawkins P. T., Witte O. N. Phosphatidylinositol 3-kinase-gamma activates Bruton's tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13820–13825. doi: 10.1073/pnas.94.25.13820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Bishop A., Witucki L., Kraybill B., Shimizu E., Tsien J., Ubersax J., Blethrow J., Morgan D. O., Shokat K. M. Structural basis for selective inhibition of Src family kinases by PP1. Chem Biol. 1999 Sep;6(9):671–678. doi: 10.1016/s1074-5521(99)80118-5. [DOI] [PubMed] [Google Scholar]
- Marshall A. J., Niiro H., Lerner C. G., Yun T. J., Thomas S., Disteche C. M., Clark E. A. A novel B lymphocyte-associated adaptor protein, Bam32, regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase. J Exp Med. 2000 Apr 17;191(8):1319–1332. doi: 10.1084/jem.191.8.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ottenhoff-Kalff A. E., Rijksen G., van Beurden E. A., Hennipman A., Michels A. A., Staal G. E. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res. 1992 Sep 1;52(17):4773–4778. [PubMed] [Google Scholar]
- Rameh L. E., Cantley L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 1999 Mar 26;274(13):8347–8350. doi: 10.1074/jbc.274.13.8347. [DOI] [PubMed] [Google Scholar]
- Rao V. R., Corradetti M. N., Chen J., Peng J., Yuan J., Prestwich G. D., Brugge J. S. Expression cloning of protein targets for 3-phosphorylated phosphoinositides. J Biol Chem. 1999 Dec 31;274(53):37893–37900. doi: 10.1074/jbc.274.53.37893. [DOI] [PubMed] [Google Scholar]
- Reif K., Nobes C. D., Thomas G., Hall A., Cantrell D. A. Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Curr Biol. 1996 Nov 1;6(11):1445–1455. doi: 10.1016/s0960-9822(96)00749-x. [DOI] [PubMed] [Google Scholar]
- Resh M. D. Myristylation and palmitylation of Src family members: the fats of the matter. Cell. 1994 Feb 11;76(3):411–413. doi: 10.1016/0092-8674(94)90104-x. [DOI] [PubMed] [Google Scholar]
- Rodrigues G. A., Falasca M., Zhang Z., Ong S. H., Schlessinger J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol. 2000 Feb;20(4):1448–1459. doi: 10.1128/mcb.20.4.1448-1459.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw M., Cohen P., Alessi D. R. The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J. 1998 Nov 15;336(Pt 1):241–246. doi: 10.1042/bj3360241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Songyang Z., Cantley L. C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci. 1995 Nov;20(11):470–475. doi: 10.1016/s0968-0004(00)89103-3. [DOI] [PubMed] [Google Scholar]
- Stephens L., Anderson K., Stokoe D., Erdjument-Bromage H., Painter G. F., Holmes A. B., Gaffney P. R., Reese C. B., McCormick F., Tempst P. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science. 1998 Jan 30;279(5351):710–714. doi: 10.1126/science.279.5351.710. [DOI] [PubMed] [Google Scholar]
- Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
- Vanhaesebroeck B., Leevers S. J., Panayotou G., Waterfield M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997 Jul;22(7):267–272. doi: 10.1016/s0968-0004(97)01061-x. [DOI] [PubMed] [Google Scholar]