Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Aug 1;349(Pt 3):877–883. doi: 10.1042/bj3490877

Structure-function studies on hsp47: pH-dependent inhibition of collagen fibril formation in vitro.

C A Thomson 1, V S Ananthanarayanan 1
PMCID: PMC1221217  PMID: 10903151

Abstract

Hsp47, a 47 kDa heat shock protein whose expression level parallels that of collagen, has been regarded as a collagen-specific molecular chaperone. Studies from other laboratories have established the association of Hsp47 with the nascent as well as the triple-helical procollagen molecule in the endoplasmic reticulum and its dissociation from procollagen in the Golgi. One of several roles suggested for Hsp47 in collagen biosynthesis is the prevention of aggregation of procollagen in the endoplasmic reticulum. However, no experimental evidence has been available to verify this suggestion. In the present study we have followed the aggregation of mature triple-helical collagen molecules into fibrils by using turbidimetric measurements in the absence and presence of Hsp47. In the pH range 6-7, fibril formation of type I collagen, as monitored by turbidimetry, proceeds with a lag of approx. 10 min and levels off by approx. 60 min. The addition of Hsp47 at pH 7 effectively inhibits fibril formation at and above a 1:1 molar ratio of Hsp47 to triple-helical collagen. This inhibition is markedly pH-dependent, being significantly diminished at pH 6. CD and fluorescence spectral data of Hsp47 in the pH range 4.2-7.4 reveal a significant alteration in its structure at pH values below 6.2, with a decrease in alpha-helix and an increase in beta-structure. This conformational change is likely to be the basis of the decreased binding of Hsp47 to collagen in vitro at pH 6.3 as well as its inability to inhibit collagen fibril formation at this pH. Our results also provide a functional assay for Hsp47 that can be used in studies on collagen and Hsp47 interactions.

Full Text

The Full Text of this article is available as a PDF (135.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cardamone M., Puri N. K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J. 1992 Mar 1;282(Pt 2):589–593. doi: 10.1042/bj2820589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cates G. A., Litchfield D. W., Narindrasorasak S., Nandan D., Ball E. H., Sanwal B. D. Phosphorylation of a gelatin-binding protein from L6 myoblasts by protein kinase C. FEBS Lett. 1987 Jun 29;218(2):195–199. doi: 10.1016/0014-5793(87)81045-1. [DOI] [PubMed] [Google Scholar]
  3. Ellis R. J., Hartl F. U. Principles of protein folding in the cellular environment. Curr Opin Struct Biol. 1999 Feb;9(1):102–110. doi: 10.1016/s0959-440x(99)80013-x. [DOI] [PubMed] [Google Scholar]
  4. Gale M., Pollanen M. S., Markiewicz P., Goh M. C. Sequential assembly of collagen revealed by atomic force microscopy. Biophys J. 1995 May;68(5):2124–2128. doi: 10.1016/S0006-3495(95)80393-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greenfield N. J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem. 1996 Mar 1;235(1):1–10. doi: 10.1006/abio.1996.0084. [DOI] [PubMed] [Google Scholar]
  6. Hirayoshi K., Kudo H., Takechi H., Nakai A., Iwamatsu A., Yamada K. M., Nagata K. HSP47: a tissue-specific, transformation-sensitive, collagen-binding heat shock protein of chicken embryo fibroblasts. Mol Cell Biol. 1991 Aug;11(8):4036–4044. doi: 10.1128/mcb.11.8.4036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holmes D. F., Watson R. B., Chapman J. A., Kadler K. E. Enzymic control of collagen fibril shape. J Mol Biol. 1996 Aug 16;261(2):93–97. doi: 10.1006/jmbi.1996.0443. [DOI] [PubMed] [Google Scholar]
  8. Kadler K. E., Hojima Y., Prockop D. J. Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers. J Biol Chem. 1988 Jul 25;263(21):10517–10523. [PubMed] [Google Scholar]
  9. Kim J. H., Johannes L., Goud B., Antony C., Lingwood C. A., Daneman R., Grinstein S. Noninvasive measurement of the pH of the endoplasmic reticulum at rest and during calcium release. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2997–3002. doi: 10.1073/pnas.95.6.2997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim J. H., Lingwood C. A., Williams D. B., Furuya W., Manolson M. F., Grinstein S. Dynamic measurement of the pH of the Golgi complex in living cells using retrograde transport of the verotoxin receptor. J Cell Biol. 1996 Sep;134(6):1387–1399. doi: 10.1083/jcb.134.6.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kojima T., Miyaishi O., Saga S., Ishiguro N., Tsutsui Y., Iwata H. The retention of abnormal type I procollagen and correlated expression of HSP 47 in fibroblasts from a patient with lethal osteogenesis imperfecta. J Pathol. 1998 Feb;184(2):212–218. doi: 10.1002/(SICI)1096-9896(199802)184:2<212::AID-PATH996>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  12. Kurkinen M., Taylor A., Garrels J. I., Hogan B. L. Cell surface-associated proteins which bind native type IV collagen or gelatin. J Biol Chem. 1984 May 10;259(9):5915–5922. [PubMed] [Google Scholar]
  13. Kuznetsova N., Chi S. L., Leikin S. Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry. 1998 Aug 25;37(34):11888–11895. doi: 10.1021/bi980089+. [DOI] [PubMed] [Google Scholar]
  14. Kuznetsova N., Leikin S. Does the triple helical domain of type I collagen encode molecular recognition and fiber assembly while telopeptides serve as catalytic domains? Effect of proteolytic cleavage on fibrillogenesis and on collagen-collagen interaction in fibers. J Biol Chem. 1999 Dec 17;274(51):36083–36088. doi: 10.1074/jbc.274.51.36083. [DOI] [PubMed] [Google Scholar]
  15. Masuda H., Fukumoto M., Hirayoshi K., Nagata K. Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis. J Clin Invest. 1994 Dec;94(6):2481–2488. doi: 10.1172/JCI117617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagata K. Expression and function of heat shock protein 47: a collagen-specific molecular chaperone in the endoplasmic reticulum. Matrix Biol. 1998 Feb;16(7):379–386. doi: 10.1016/s0945-053x(98)90011-7. [DOI] [PubMed] [Google Scholar]
  17. Nagata K. Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci. 1996 Jan;21(1):22–26. doi: 10.1016/0968-0004(96)80881-4. [DOI] [PubMed] [Google Scholar]
  18. Nagata K., Yamada K. M. Phosphorylation and transformation sensitivity of a major collagen-binding protein of fibroblasts. J Biol Chem. 1986 Jun 5;261(16):7531–7536. [PubMed] [Google Scholar]
  19. Nakai A., Hirayoshi K., Nagata K. Transformation of BALB/3T3 cells by simian virus 40 causes a decreased synthesis of a collagen-binding heat-shock protein (hsp47). J Biol Chem. 1990 Jan 15;265(2):992–999. [PubMed] [Google Scholar]
  20. Nakai A., Satoh M., Hirayoshi K., Nagata K. Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J Cell Biol. 1992 May;117(4):903–914. doi: 10.1083/jcb.117.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Notbohm H., Nokelainen M., Myllyharju J., Fietzek P. P., Müller P. K., Kivirikko K. I. Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro. J Biol Chem. 1999 Mar 26;274(13):8988–8992. doi: 10.1074/jbc.274.13.8988. [DOI] [PubMed] [Google Scholar]
  22. Prockop D. J., Fertala A. Inhibition of the self-assembly of collagen I into fibrils with synthetic peptides. Demonstration that assembly is driven by specific binding sites on the monomers. J Biol Chem. 1998 Jun 19;273(25):15598–15604. doi: 10.1074/jbc.273.25.15598. [DOI] [PubMed] [Google Scholar]
  23. Prockop D. J., Kivirikko K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. [DOI] [PubMed] [Google Scholar]
  24. Saga S., Nagata K., Chen W. T., Yamada K. M. pH-dependent function, purification, and intracellular location of a major collagen-binding glycoprotein. J Cell Biol. 1987 Jul;105(1):517–527. doi: 10.1083/jcb.105.1.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Satoh M., Hirayoshi K., Yokota S., Hosokawa N., Nagata K. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol. 1996 Apr;133(2):469–483. doi: 10.1083/jcb.133.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sauk J. J., Smith T., Norris K., Ferreira L. Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(I) chains of type I procollagen. J Biol Chem. 1994 Feb 11;269(6):3941–3946. [PubMed] [Google Scholar]
  27. Smith T., Ferreira L. R., Hebert C., Norris K., Sauk J. J. Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum. J Biol Chem. 1995 Aug 4;270(31):18323–18328. doi: 10.1074/jbc.270.31.18323. [DOI] [PubMed] [Google Scholar]
  28. Sreerama N., Woody R. W. Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J Mol Biol. 1994 Sep 30;242(4):497–507. doi: 10.1006/jmbi.1994.1597. [DOI] [PubMed] [Google Scholar]
  29. Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
  30. Suarez G., Veliz M., Nagel R. L. Role of hydrophobic interactions in collagen fibril formation: effect of alkylureas in vitro. Arch Biochem Biophys. 1980 Dec;205(2):422–427. doi: 10.1016/0003-9861(80)90125-3. [DOI] [PubMed] [Google Scholar]
  31. Sunamoto M., Kuze K., Tsuji H., Ohishi N., Yagi K., Nagata K., Kita T., Doi T. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress collagen accumulation in experimental glomerulonephritis. Lab Invest. 1998 Aug;78(8):967–972. [PubMed] [Google Scholar]
  32. Wallace D. The role of hydrophobic bonding in collagen fibril formation: a quantitative model. Biopolymers. 1985 Sep;24(9):1705–1720. doi: 10.1002/bip.360240905. [DOI] [PubMed] [Google Scholar]
  33. Ward N. P., Hulmes D. J., Chapman J. A. Collagen self-assembly in vitro: electron microscopy of initial aggregates formed during the lag phase. J Mol Biol. 1986 Jul 5;190(1):107–112. doi: 10.1016/0022-2836(86)90079-3. [DOI] [PubMed] [Google Scholar]
  34. Williams B. R., Gelman R. A., Poppke D. C., Piez K. A. Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem. 1978 Sep 25;253(18):6578–6585. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES