Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Sep 15;350(Pt 3):873–881.

Calcium-dependent conformational stability of modules 1 and 2 of human gelsolin.

A Zapun 1, S Grammatyka 1, G Déral 1, T Vernet 1
PMCID: PMC1221322  PMID: 10970804

Abstract

Gelsolin modulates the actin cytoskeleton in the cytoplasm and clears the circulation of stray filaments. In vitro, gelsolin cleaves, nucleates and caps actin filaments, activities that are calcium-dependent. Both cellular and secreted forms share a sequence of 730 residues comprising six homologous modules termed G1-G6. A disulphide bond is formed in secreted G2, whereas in the cytoplasm it remains reduced. A point mutation in G2 causes an amyloidosis with neurological, ophthalmological and dermatological symptoms. This mutation does not affect the cytoplasmic form, while the secreted form is proteolysed. As a first step towards understanding how gelsolin folds and functions in different cellular compartments, we have characterized at equilibrium the urea-induced unfolding of G1 and G2, with or without calcium and/or disulphide bond. G1 and G2 both exhibit two-state unfolding behaviour and are stabilized by calcium. The disulphide bond also contributes to the stability of G2. In the absence of Ca(2+) and disulphide bond, G2 adopts a non-native conformation, suggesting that folding of G2 in the cytoplasm relies on the presence of surrounding modules or other molecular partners.

Full Text

The Full Text of this article is available as a PDF (255.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma T., Witke W., Stossel T. P., Hartwig J. H., Kwiatkowski D. J. Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J. 1998 Mar 2;17(5):1362–1370. doi: 10.1093/emboj/17.5.1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burtnick L. D., Koepf E. K., Grimes J., Jones E. Y., Stuart D. I., McLaughlin P. J., Robinson R. C. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation. Cell. 1997 Aug 22;90(4):661–670. doi: 10.1016/s0092-8674(00)80527-9. [DOI] [PubMed] [Google Scholar]
  3. Hellweg T., Hinssen H., Eimer W. The Ca(2+)-induced conformational change of gelsolin is located in the carboxyl-terminal half of the molecule. Biophys J. 1993 Aug;65(2):799–805. doi: 10.1016/S0006-3495(93)81121-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Isaacson R. L., Weeds A. G., Fersht A. R. Equilibria and kinetics of folding of gelsolin domain 2 and mutants involved in familial amyloidosis-Finnish type. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11247–11252. doi: 10.1073/pnas.96.20.11247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jaenicke R. Stability and folding of domain proteins. Prog Biophys Mol Biol. 1999;71(2):155–241. doi: 10.1016/s0079-6107(98)00032-7. [DOI] [PubMed] [Google Scholar]
  6. Janmey P. A., Lamb J., Allen P. G., Matsudaira P. T. Phosphoinositide-binding peptides derived from the sequences of gelsolin and villin. J Biol Chem. 1992 Jun 15;267(17):11818–11823. [PubMed] [Google Scholar]
  7. Kangas H., Paunio T., Kalkkinen N., Jalanko A., Peltonen L. In vitro expression analysis shows that the secretory form of gelsolin is the sole source of amyloid in gelsolin-related amyloidosis. Hum Mol Genet. 1996 Sep;5(9):1237–1243. doi: 10.1093/hmg/5.9.1237. [DOI] [PubMed] [Google Scholar]
  8. Kangas H., Ulmanen I., Paunio T., Kwiatkowski D. J., Lehtovirta M., Jalanko A., Peltonen L. Functional consequences of amyloidosis mutation for gelsolin polypeptide -- analysis of gelsolin-actin interaction and gelsolin processing in gelsolin knock-out fibroblasts. FEBS Lett. 1999 Jul 9;454(3):233–239. doi: 10.1016/s0014-5793(99)00790-5. [DOI] [PubMed] [Google Scholar]
  9. Kilhoffer M. C., Gérard D. Fluorescence study of brevin, the Mr 92 000 actin-capping and -fragmenting protein isolated from serum. Effect of Ca2+ on protein conformation. Biochemistry. 1985 Sep 24;24(20):5653–5660. doi: 10.1021/bi00341a055. [DOI] [PubMed] [Google Scholar]
  10. Kiuru S. Gelsolin-related familial amyloidosis, Finnish type (FAF), and its variants found worldwide. Amyloid. 1998 Mar;5(1):55–66. doi: 10.3109/13506129809007291. [DOI] [PubMed] [Google Scholar]
  11. Koepf E. K., Burtnick L. D. Horse plasma gelsolin labelled with fluorescein isothiocyanate responds to calcium and actin. Eur J Biochem. 1993 Mar 15;212(3):713–718. doi: 10.1111/j.1432-1033.1993.tb17709.x. [DOI] [PubMed] [Google Scholar]
  12. Kothakota S., Azuma T., Reinhard C., Klippel A., Tang J., Chu K., McGarry T. J., Kirschner M. W., Koths K., Kwiatkowski D. J. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science. 1997 Oct 10;278(5336):294–298. doi: 10.1126/science.278.5336.294. [DOI] [PubMed] [Google Scholar]
  13. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kwiatkowski D. J. Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol. 1999 Feb;11(1):103–108. doi: 10.1016/s0955-0674(99)80012-x. [DOI] [PubMed] [Google Scholar]
  15. Kwiatkowski D. J., Stossel T. P., Orkin S. H., Mole J. E., Colten H. R., Yin H. L. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature. 1986 Oct 2;323(6087):455–458. doi: 10.1038/323455a0. [DOI] [PubMed] [Google Scholar]
  16. Lee W. M., Galbraith R. M. The extracellular actin-scavenger system and actin toxicity. N Engl J Med. 1992 May 14;326(20):1335–1341. doi: 10.1056/NEJM199205143262006. [DOI] [PubMed] [Google Scholar]
  17. Maury C. P. Gelsolin-related amyloidosis. Identification of the amyloid protein in Finnish hereditary amyloidosis as a fragment of variant gelsolin. J Clin Invest. 1991 Apr;87(4):1195–1199. doi: 10.1172/JCI115118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McLaughlin P. J., Gooch J. T., Mannherz H. G., Weeds A. G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature. 1993 Aug 19;364(6439):685–692. doi: 10.1038/364685a0. [DOI] [PubMed] [Google Scholar]
  19. Meldolesi J., Pozzan T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci. 1998 Jan;23(1):10–14. doi: 10.1016/s0968-0004(97)01143-2. [DOI] [PubMed] [Google Scholar]
  20. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  21. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paunio T., Kangas H., Heinonen O., Buc-Caron M. H., Robert J. J., Kaasinen S., Julkunen I., Mallet J., Peltonen L. Cells of the neuronal lineage play a major role in the generation of amyloid precursor fragments in gelsolin-related amyloidosis. J Biol Chem. 1998 Jun 26;273(26):16319–16324. doi: 10.1074/jbc.273.26.16319. [DOI] [PubMed] [Google Scholar]
  23. Pope B. J., Gooch J. T., Weeds A. G. Probing the effects of calcium on gelsolin. Biochemistry. 1997 Dec 16;36(50):15848–15855. doi: 10.1021/bi972192p. [DOI] [PubMed] [Google Scholar]
  24. Pope B., Maciver S., Weeds A. Localization of the calcium-sensitive actin monomer binding site in gelsolin to segment 4 and identification of calcium binding sites. Biochemistry. 1995 Feb 7;34(5):1583–1588. doi: 10.1021/bi00005a014. [DOI] [PubMed] [Google Scholar]
  25. Reid S. W., Koepf E. K., Burtnick L. D. Fluorescent responses of acrylodan-labeled plasma gelsolin. Arch Biochem Biophys. 1993 Apr;302(1):31–36. doi: 10.1006/abbi.1993.1176. [DOI] [PubMed] [Google Scholar]
  26. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  27. Robinson R. C., Mejillano M., Le V. P., Burtnick L. D., Yin H. L., Choe S. Domain movement in gelsolin: a calcium-activated switch. Science. 1999 Dec 3;286(5446):1939–1942. doi: 10.1126/science.286.5446.1939. [DOI] [PubMed] [Google Scholar]
  28. Rouayrenc J. F., Fattoum A., Méjean C., Kassab R. Characterization of the Ca2+-induced conformational changes in gelsolin and identification of interaction regions between actin and gelsolin. Biochemistry. 1986 Jul 1;25(13):3859–3867. doi: 10.1021/bi00361a018. [DOI] [PubMed] [Google Scholar]
  29. Sun H. Q., Yamamoto M., Mejillano M., Yin H. L. Gelsolin, a multifunctional actin regulatory protein. J Biol Chem. 1999 Nov 19;274(47):33179–33182. doi: 10.1074/jbc.274.47.33179. [DOI] [PubMed] [Google Scholar]
  30. Way M., Gooch J., Pope B., Weeds A. G. Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. J Cell Biol. 1989 Aug;109(2):593–605. doi: 10.1083/jcb.109.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Way M., Pope B., Weeds A. G. Evidence for functional homology in the F-actin binding domains of gelsolin and alpha-actinin: implications for the requirements of severing and capping. J Cell Biol. 1992 Nov;119(4):835–842. doi: 10.1083/jcb.119.4.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weeds A. G., Gooch J., McLaughlin P., Pope B., Bengtsdotter M., Karlsson R. Identification of the trapped calcium in the gelsolin segment 1-actin complex: implications for the role of calcium in the control of gelsolin activity. FEBS Lett. 1995 Mar 6;360(3):227–230. doi: 10.1016/0014-5793(95)00109-m. [DOI] [PubMed] [Google Scholar]
  33. Wen D., Corina K., Chow E. P., Miller S., Janmey P. A., Pepinsky R. B. The plasma and cytoplasmic forms of human gelsolin differ in disulfide structure. Biochemistry. 1996 Jul 30;35(30):9700–9709. doi: 10.1021/bi960920n. [DOI] [PubMed] [Google Scholar]
  34. Yin H. L. Gelsolin: calcium- and polyphosphoinositide-regulated actin-modulating protein. Bioessays. 1987 Oct;7(4):176–179. doi: 10.1002/bies.950070409. [DOI] [PubMed] [Google Scholar]
  35. Yu F. X., Zhou D. M., Yin H. L. Chimeric and truncated gCap39 elucidate the requirements for actin filament severing and end capping by the gelsolin family of proteins. J Biol Chem. 1991 Oct 15;266(29):19269–19275. [PubMed] [Google Scholar]
  36. de la Chapelle A., Tolvanen R., Boysen G., Santavy J., Bleeker-Wagemakers L., Maury C. P., Kere J. Gelsolin-derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nat Genet. 1992 Oct;2(2):157–160. doi: 10.1038/ng1092-157. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES