Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):221–232. doi: 10.1042/0264-6021:3510221

Apoptotic signalling cascade in photosensitized human epidermal carcinoma A431 cells: involvement of singlet oxygen, c-Jun N-terminal kinase, caspase-3 and p21-activated kinase 2.

W H Chan 1, J S Yu 1, S D Yang 1
PMCID: PMC1221353  PMID: 10998365

Abstract

Photodynamic treatment (PDT) elicits diverse cellular responses and can also cause apoptosis. In the present study the cascade of signalling events involved in PDT-induced apoptosis was investigated using Rose Bengal (RB) as the photosensitizer, and human epidermal carcinoma A431 cells as the cell model. We show that a 36-kDa kinase detected by an in-gel kinase assay is markedly activated during PDT-triggered apoptosis. Immunoblot analysis revealed that this 36-kDa kinase represents the C-terminal catalytic fragment of p21-activated kinase (PAK)2. Generation of this active fragment of PAK2 is mediated by the caspase family of proteases, which are activated by PDT. The specific caspase inhibitors (acetyl-Asp-Glu-Val-Asp-aldehyde and acetyl-Tyr-Val-Ala-Asp-chloromethylketone) block the PDT-induced caspase-3 activation and subsequent PAK2 cleavage/activation, indicating a major role for the caspase family proteases in PDT-induced apoptosis. Both PDT-induced caspase-3 activation and PAK2 cleavage/activation can be inhibited by the singlet oxygen scavengers, L-histidine and alpha-tocopherol, but not the hydroxyl radical scavenger, mannitol, demonstrating that singlet oxygen is an immediate early-apoptotic signal generated by PDT. In addition, PDT can induce a two-stage activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) in A431 cells; the early-stage JNK activation is singlet oxygen-dependent, whereas the late-stage JNK activation is mediated by the singlet oxygen-triggered caspase activation. Experiments using anti-sense oligonucleotides against JNK1 and PAK2 further show that during PDT-induced apoptosis the early-stage JNK activation is required for caspase activation, and that the late-stage JNK activation is regulated by the caspase-mediated cleavage/activation of PAK2. Collectively, a model for the PDT-triggered apoptotic signalling cascade with RB is proposed, which involves singlet oxygen, JNK, caspase-3 and PAK2, sequentially.

Full Text

The Full Text of this article is available as a PDF (340.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal M. L., Clay M. E., Harvey E. J., Evans H. H., Antunez A. R., Oleinick N. L. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res. 1991 Nov 1;51(21):5993–5996. [PubMed] [Google Scholar]
  2. Agarwal M. L., Larkin H. E., Zaidi S. I., Mukhtar H., Oleinick N. L. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res. 1993 Dec 15;53(24):5897–5902. [PubMed] [Google Scholar]
  3. Ahmad N., Feyes D. K., Agarwal R., Mukhtar H. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6977–6982. doi: 10.1073/pnas.95.12.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson P. Kinase cascades regulating entry into apoptosis. Microbiol Mol Biol Rev. 1997 Mar;61(1):33–46. doi: 10.1128/mmbr.61.1.33-46.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Apoptosis: alive and kicking in 1997. Trends Cell Biol. 1997 Mar;7(3):111–114. doi: 10.1016/S0962-8924(96)10053-2. [DOI] [PubMed] [Google Scholar]
  6. Assefa Z., Vantieghem A., Declercq W., Vandenabeele P., Vandenheede J. R., Merlevede W., de Witte P., Agostinis P. The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J Biol Chem. 1999 Mar 26;274(13):8788–8796. doi: 10.1074/jbc.274.13.8788. [DOI] [PubMed] [Google Scholar]
  7. Bagrodia S., Taylor S. J., Creasy C. L., Chernoff J., Cerione R. A. Identification of a mouse p21Cdc42/Rac activated kinase. J Biol Chem. 1995 Sep 29;270(39):22731–22737. doi: 10.1074/jbc.270.39.22731. [DOI] [PubMed] [Google Scholar]
  8. Basu-Modak S., Tyrrell R. M. Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene. Cancer Res. 1993 Oct 1;53(19):4505–4510. [PubMed] [Google Scholar]
  9. Benner G. E., Dennis P. B., Masaracchia R. A. Activation of an S6/H4 kinase (PAK 65) from human placenta by intramolecular and intermolecular autophosphorylation. J Biol Chem. 1995 Sep 8;270(36):21121–21128. doi: 10.1074/jbc.270.36.21121. [DOI] [PubMed] [Google Scholar]
  10. Chan W. H., Yu J. S., Yang S. D. Heat shock stress induces cleavage and activation of PAK2 in apoptotic cells. J Protein Chem. 1998 Jul;17(5):485–494. doi: 10.1023/a:1022578820147. [DOI] [PubMed] [Google Scholar]
  11. Chan W. H., Yu J. S., Yang S. D. PAK2 is cleaved and activated during hyperosmotic shock-induced apoptosis via a caspase-dependent mechanism: evidence for the involvement of oxidative stress. J Cell Physiol. 1999 Mar;178(3):397–408. doi: 10.1002/(SICI)1097-4652(199903)178:3<397::AID-JCP14>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  12. Chauhan D., Pandey P., Ogata A., Teoh G., Treon S., Urashima M., Kharbanda S., Anderson K. C. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene. 1997 Aug 14;15(7):837–843. doi: 10.1038/sj.onc.1201253. [DOI] [PubMed] [Google Scholar]
  13. Chen Y. R., Wang X., Templeton D., Davis R. J., Tan T. H. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem. 1996 Dec 13;271(50):31929–31936. doi: 10.1074/jbc.271.50.31929. [DOI] [PubMed] [Google Scholar]
  14. Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
  15. Dérijard B., Raingeaud J., Barrett T., Wu I. H., Han J., Ulevitch R. J., Davis R. J. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science. 1995 Feb 3;267(5198):682–685. doi: 10.1126/science.7839144. [DOI] [PubMed] [Google Scholar]
  16. Enari M., Talanian R. V., Wong W. W., Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature. 1996 Apr 25;380(6576):723–726. doi: 10.1038/380723a0. [DOI] [PubMed] [Google Scholar]
  17. Fernandes-Alnemri T., Litwack G., Alnemri E. S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994 Dec 9;269(49):30761–30764. [PubMed] [Google Scholar]
  18. Frost J. A., Xu S., Hutchison M. R., Marcus S., Cobb M. H. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol. 1996 Jul;16(7):3707–3713. doi: 10.1128/mcb.16.7.3707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gomer C. J., Rucker N., Ferrario A., Wong S. Properties and applications of photodynamic therapy. Radiat Res. 1989 Oct;120(1):1–18. [PubMed] [Google Scholar]
  20. Granville D. J., Carthy C. M., Jiang H., Shore G. C., McManus B. M., Hunt D. W. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett. 1998 Oct 16;437(1-2):5–10. doi: 10.1016/s0014-5793(98)01193-4. [DOI] [PubMed] [Google Scholar]
  21. He J., Whitacre C. M., Xue L. Y., Berger N. A., Oleinick N. L. Protease activation and cleavage of poly(ADP-ribose) polymerase: an integral part of apoptosis in response to photodynamic treatment. Cancer Res. 1998 Mar 1;58(5):940–946. [PubMed] [Google Scholar]
  22. He X. Y., Sikes R. A., Thomsen S., Chung L. W., Jacques S. L. Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell lines. Photochem Photobiol. 1994 Apr;59(4):468–473. doi: 10.1111/j.1751-1097.1994.tb05066.x. [DOI] [PubMed] [Google Scholar]
  23. Henderson B. W., Dougherty T. J. How does photodynamic therapy work? Photochem Photobiol. 1992 Jan;55(1):145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x. [DOI] [PubMed] [Google Scholar]
  24. Hu M. C., Qiu W. R., Wang X., Meyer C. F., Tan T. H. Human HPK1, a novel human hematopoietic progenitor kinase that activates the JNK/SAPK kinase cascade. Genes Dev. 1996 Sep 15;10(18):2251–2264. doi: 10.1101/gad.10.18.2251. [DOI] [PubMed] [Google Scholar]
  25. Jakobi R., Chen C. J., Tuazon P. T., Traugh J. A. Molecular cloning and sequencing of the cytostatic G protein-activated protein kinase PAK I. J Biol Chem. 1996 Mar 15;271(11):6206–6211. doi: 10.1074/jbc.271.11.6206. [DOI] [PubMed] [Google Scholar]
  26. Johnson B. E., Ferguson J. Drug and chemical photosensitivity. Semin Dermatol. 1990 Mar;9(1):39–46. [PubMed] [Google Scholar]
  27. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Klotz L. O., Briviba K., Sies H. Singlet oxygen mediates the activation of JNK by UVA radiation in human skin fibroblasts. FEBS Lett. 1997 May 26;408(3):289–291. doi: 10.1016/s0014-5793(97)00440-7. [DOI] [PubMed] [Google Scholar]
  29. Klotz L. O., Fritsch C., Briviba K., Tsacmacidis N., Schliess F., Sies H. Activation of JNK and p38 but not ERK MAP kinases in human skin cells by 5-aminolevulinate-photodynamic therapy. Cancer Res. 1998 Oct 1;58(19):4297–4300. [PubMed] [Google Scholar]
  30. Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
  31. Lee N., MacDonald H., Reinhard C., Halenbeck R., Roulston A., Shi T., Williams L. T. Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13642–13647. doi: 10.1073/pnas.94.25.13642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lenczowski J. M., Dominguez L., Eder A. M., King L. B., Zacharchuk C. M., Ashwell J. D. Lack of a role for Jun kinase and AP-1 in Fas-induced apoptosis. Mol Cell Biol. 1997 Jan;17(1):170–181. doi: 10.1128/mcb.17.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lin A., Minden A., Martinetto H., Claret F. X., Lange-Carter C., Mercurio F., Johnson G. L., Karin M. Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science. 1995 Apr 14;268(5208):286–290. doi: 10.1126/science.7716521. [DOI] [PubMed] [Google Scholar]
  34. Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994 Jan 6;367(6458):40–46. doi: 10.1038/367040a0. [DOI] [PubMed] [Google Scholar]
  35. Martin G. A., Bollag G., McCormick F., Abo A. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 1995 May 1;14(9):1970–1978. doi: 10.1002/j.1460-2075.1995.tb07189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mühlenbeck F., Haas E., Schwenzer R., Schubert G., Grell M., Smith C., Scheurich P., Wajant H. TRAIL/Apo2L activates c-Jun NH2-terminal kinase (JNK) via caspase-dependent and caspase-independent pathways. J Biol Chem. 1998 Dec 4;273(49):33091–33098. doi: 10.1074/jbc.273.49.33091. [DOI] [PubMed] [Google Scholar]
  37. Nicholson D. W., Thornberry N. A. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug;22(8):299–306. doi: 10.1016/s0968-0004(97)01085-2. [DOI] [PubMed] [Google Scholar]
  38. Oleinick N. L., Evans H. H. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res. 1998 Nov;150(5 Suppl):S146–S156. [PubMed] [Google Scholar]
  39. Ozaki I., Tani E., Ikemoto H., Kitagawa H., Fujikawa H. Activation of stress-activated protein kinase/c-Jun NH2-terminal kinase and p38 kinase in calphostin C-induced apoptosis requires caspase-3-like proteases but is dispensable for cell death. J Biol Chem. 1999 Feb 26;274(9):5310–5317. doi: 10.1074/jbc.274.9.5310. [DOI] [PubMed] [Google Scholar]
  40. Polverino A., Frost J., Yang P., Hutchison M., Neiman A. M., Cobb M. H., Marcus S. Activation of mitogen-activated protein kinase cascades by p21-activated protein kinases in cell-free extracts of Xenopus oocytes. J Biol Chem. 1995 Nov 3;270(44):26067–26070. doi: 10.1074/jbc.270.44.26067. [DOI] [PubMed] [Google Scholar]
  41. Pombo C. M., Bonventre J. V., Molnar A., Kyriakis J., Force T. Activation of a human Ste20-like kinase by oxidant stress defines a novel stress response pathway. EMBO J. 1996 Sep 2;15(17):4537–4546. [PMC free article] [PubMed] [Google Scholar]
  42. Pombo C. M., Kehrl J. H., Sánchez I., Katz P., Avruch J., Zon L. I., Woodgett J. R., Force T., Kyriakis J. M. Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase. Nature. 1995 Oct 26;377(6551):750–754. doi: 10.1038/377750a0. [DOI] [PubMed] [Google Scholar]
  43. Rudel T., Bokoch G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 1997 Jun 6;276(5318):1571–1574. doi: 10.1126/science.276.5318.1571. [DOI] [PubMed] [Google Scholar]
  44. Rudel T., Zenke F. T., Chuang T. H., Bokoch G. M. p21-activated kinase (PAK) is required for Fas-induced JNK activation in Jurkat cells. J Immunol. 1998 Jan 1;160(1):7–11. [PubMed] [Google Scholar]
  45. Seimiya H., Mashima T., Toho M., Tsuruo T. c-Jun NH2-terminal kinase-mediated activation of interleukin-1beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J Biol Chem. 1997 Feb 14;272(7):4631–4636. doi: 10.1074/jbc.272.7.4631. [DOI] [PubMed] [Google Scholar]
  46. Sells M. A., Chernoff J. Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol. 1997 Apr;7(4):162–167. doi: 10.1016/S0962-8924(97)01003-9. [DOI] [PubMed] [Google Scholar]
  47. Separovic D., He J., Oleinick N. L. Ceramide generation in response to photodynamic treatment of L5178Y mouse lymphoma cells. Cancer Res. 1997 May 1;57(9):1717–1721. [PubMed] [Google Scholar]
  48. Stratton S. P., Liebler D. C. Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of beta-carotene and alpha-tocopherol. Biochemistry. 1997 Oct 21;36(42):12911–12920. doi: 10.1021/bi9708646. [DOI] [PubMed] [Google Scholar]
  49. Su Y. C., Han J., Xu S., Cobb M., Skolnik E. Y. NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain. EMBO J. 1997 Mar 17;16(6):1279–1290. doi: 10.1093/emboj/16.6.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sánchez I., Hughes R. T., Mayer B. J., Yee K., Woodgett J. R., Avruch J., Kyriakis J. M., Zon L. I. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature. 1994 Dec 22;372(6508):794–798. doi: 10.1038/372794a0. [DOI] [PubMed] [Google Scholar]
  51. Tang T. K., Chang W. C., Chan W. H., Yang S. D., Ni M. H., Yu J. S. Proteolytic cleavage and activation of PAK2 during UV irradiation-induced apoptosis in A431 cells. J Cell Biochem. 1998 Sep 15;70(4):442–454. [PubMed] [Google Scholar]
  52. Tao J., Sanghera J. S., Pelech S. L., Wong G., Levy J. G. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative. J Biol Chem. 1996 Oct 25;271(43):27107–27115. doi: 10.1074/jbc.271.43.27107. [DOI] [PubMed] [Google Scholar]
  53. Taylor L. K., Wang H. C., Erikson R. L. Newly identified stress-responsive protein kinases, Krs-1 and Krs-2. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10099–10104. doi: 10.1073/pnas.93.19.10099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  55. Tung R. M., Blenis J. A novel human SPS1/STE20 homologue, KHS, activates Jun N-terminal kinase. Oncogene. 1997 Feb 13;14(6):653–659. doi: 10.1038/sj.onc.1200877. [DOI] [PubMed] [Google Scholar]
  56. Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
  57. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  58. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  59. Xue L. y., He J., Oleinick N. L. Promotion of photodynamic therapy-induced apoptosis by stress kinases. Cell Death Differ. 1999 Sep;6(9):855–864. doi: 10.1038/sj.cdd.4400558. [DOI] [PubMed] [Google Scholar]
  60. Yan M., Dai T., Deak J. C., Kyriakis J. M., Zon L. I., Woodgett J. R., Templeton D. J. Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature. 1994 Dec 22;372(6508):798–800. doi: 10.1038/372798a0. [DOI] [PubMed] [Google Scholar]
  61. Yu J. S., Chen W. J., Ni M. H., Chan W. H., Yang S. D. Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family. Biochem J. 1998 Aug 15;334(Pt 1):121–131. doi: 10.1042/bj3340121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yu J. S., Yang S. D. Okadaic acid, a serine/threonine phosphatase inhibitor, induces tyrosine dephosphorylation/inactivation of protein kinase FA/GSK-3 alpha in A431 cells. J Biol Chem. 1994 May 20;269(20):14341–14344. [PubMed] [Google Scholar]
  63. Yu J. S., Yang S. D. Protein kinase FA/glycogen synthase kinase-3 predominantly phosphorylates the in vivo site Thr97-Pro in brain myelin basic protein: evidence for Thr-Pro and Ser-Arg-X-X-Ser as consensus sequence motifs. J Neurochem. 1994 Apr;62(4):1596–1603. doi: 10.1046/j.1471-4159.1994.62041596.x. [DOI] [PubMed] [Google Scholar]
  64. Yu J. S., Yang S. D. Tyrosine dephosphorylation and concurrent inactivation of protein kinase FA/GSK-3 alpha by genistein in A431 cells. J Cell Biochem. 1994 Sep;56(1):131–141. doi: 10.1002/jcb.240560117. [DOI] [PubMed] [Google Scholar]
  65. Zaidi S. I., Oleinick N. L., Zaim M. T., Mukhtar H. Apoptosis during photodynamic therapy-induced ablation of RIF-1 tumors in C3H mice: electron microscopic, histopathologic and biochemical evidence. Photochem Photobiol. 1993 Dec;58(6):771–776. doi: 10.1111/j.1751-1097.1993.tb04969.x. [DOI] [PubMed] [Google Scholar]
  66. Zhang S., Han J., Sells M. A., Chernoff J., Knaus U. G., Ulevitch R. J., Bokoch G. M. Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem. 1995 Oct 13;270(41):23934–23936. doi: 10.1074/jbc.270.41.23934. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES