Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):251–256. doi: 10.1042/0264-6021:3510251

Activity of the human cytochrome c1 promoter is modulated by E2F.

K Luciakova 1, P Barath 1, R Li 1, A Zaid 1, B D Nelson 1
PMCID: PMC1221356  PMID: 10998368

Abstract

The human cytochrome c(1) promoter is strongly activated in transfected Drosophila SL2 cells expressing exogenous human E2F1. Transfection-deletion experiments, DNase I protection by E2F1 and gel mobility-shift experiments locate E2F1 activation sites to two regions on either side of the transcription start site. Deletion of either region prevents E2F1 activation in transfected SL2 cells, suggesting a co-operative interaction between them. E2F6, a member of the E2F family that lacks transactivation domains but contains specific suppressor domains, inhibits cytochrome c(1) promoter activity when co-transfected into HeLa cells, indicating that the E2F proteins modulate the cytochrome c(1) promoter in mammalian cells. However, E2F is not a general regulator of oxidative phosphorylation genes since three additional nuclear-encoded mitochondrial genes were unaffected by E2F1 or E2F6.

Full Text

The Full Text of this article is available as a PDF (175.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black A. R., Azizkhan-Clifford J. Regulation of E2F: a family of transcription factors involved in proliferation control. Gene. 1999 Sep 17;237(2):281–302. doi: 10.1016/s0378-1119(99)00305-4. [DOI] [PubMed] [Google Scholar]
  2. Cartwright P., Müller H., Wagener C., Holm K., Helin K. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene. 1998 Aug 6;17(5):611–623. doi: 10.1038/sj.onc.1201975. [DOI] [PubMed] [Google Scholar]
  3. Courey A. J., Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. doi: 10.1016/0092-8674(88)90144-4. [DOI] [PubMed] [Google Scholar]
  4. Di Nocera P. P., Dawid I. B. Transient expression of genes introduced into cultured cells of Drosophila. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7095–7098. doi: 10.1073/pnas.80.23.7095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gaubatz S., Wood J. G., Livingston D. M. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9190–9195. doi: 10.1073/pnas.95.16.9190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glaichenhaus N., Léopold P., Cuzin F. Increased levels of mitochondrial gene expression in rat fibroblast cells immortalized or transformed by viral and cellular oncogenes. EMBO J. 1986 Jun;5(6):1261–1265. doi: 10.1002/j.1460-2075.1986.tb04355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Joste V., Goitom Z., Nelson B. D. Thyroid hormone regulation of nuclear-encoded mitochondrial inner membrane polypeptides of the liver. Eur J Biochem. 1989 Sep 1;184(1):255–260. doi: 10.1111/j.1432-1033.1989.tb15015.x. [DOI] [PubMed] [Google Scholar]
  8. Kadowaki T., Kitagawa Y. Enhanced transcription of mitochondrial genes after growth stimulation and glucocorticoid treatment of Reuber hepatoma H-35. FEBS Lett. 1988 Jun 6;233(1):51–56. doi: 10.1016/0014-5793(88)81354-1. [DOI] [PubMed] [Google Scholar]
  9. Karlseder J., Rotheneder H., Wintersberger E. Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol. 1996 Apr;16(4):1659–1667. doi: 10.1128/mcb.16.4.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li R., Hodny Z., Luciakova K., Barath P., Nelson B. D. Sp1 activates and inhibits transcription from separate elements in the proximal promoter of the human adenine nucleotide translocase 2 (ANT2) gene. J Biol Chem. 1996 Aug 2;271(31):18925–18930. doi: 10.1074/jbc.271.31.18925. [DOI] [PubMed] [Google Scholar]
  11. Li R., Luciakova K., Nelson B. D. Expression of the human cytochrome c1 gene is controlled through multiple Sp1-binding sites and an initiator region. Eur J Biochem. 1996 Oct 15;241(2):649–656. doi: 10.1111/j.1432-1033.1996.00649.x. [DOI] [PubMed] [Google Scholar]
  12. Lin S. Y., Black A. R., Kostic D., Pajovic S., Hoover C. N., Azizkhan J. C. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol. 1996 Apr;16(4):1668–1675. doi: 10.1128/mcb.16.4.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luciakova K., Li R., Nelson B. D. Differential regulation of the transcript levels of some nuclear-encoded and mitochondrial-encoded respiratory-chain components in response to growth activation. Eur J Biochem. 1992 Jul 1;207(1):253–257. doi: 10.1111/j.1432-1033.1992.tb17045.x. [DOI] [PubMed] [Google Scholar]
  14. Luciakova K., Nelson B. D. Transcript levels for nuclear-encoded mammalian mitochondrial respiratory-chain components are regulated by thyroid hormone in an uncoordinated fashion. Eur J Biochem. 1992 Jul 1;207(1):247–251. doi: 10.1111/j.1432-1033.1992.tb17044.x. [DOI] [PubMed] [Google Scholar]
  15. Lucibello F. C., Liu N., Zwicker J., Gross C., Müller R. The differential binding of E2F and CDF repressor complexes contributes to the timing of cell cycle-regulated transcription. Nucleic Acids Res. 1997 Dec 15;25(24):4921–4925. doi: 10.1093/nar/25.24.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morkel M., Wenkel J., Bannister A. J., Kouzarides T., Hagemeier C. An E2F-like repressor of transcription. Nature. 1997 Dec 11;390(6660):567–568. doi: 10.1038/37507. [DOI] [PubMed] [Google Scholar]
  17. Ohta S., Tomura H., Matsuda K., Kagawa Y. Gene structure of the human mitochondrial adenosine triphosphate synthase beta subunit. J Biol Chem. 1988 Aug 15;263(23):11257–11262. [PubMed] [Google Scholar]
  18. Ohtani K., Nevins J. R. Functional properties of a Drosophila homolog of the E2F1 gene. Mol Cell Biol. 1994 Mar;14(3):1603–1612. doi: 10.1128/mcb.14.3.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parisi M. A., Clayton D. A. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science. 1991 May 17;252(5008):965–969. doi: 10.1126/science.2035027. [DOI] [PubMed] [Google Scholar]
  20. Puigserver P., Wu Z., Park C. W., Graves R., Wright M., Spiegelman B. M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998 Mar 20;92(6):829–839. doi: 10.1016/s0092-8674(00)81410-5. [DOI] [PubMed] [Google Scholar]
  21. Rohde M., Warthoe P., Gjetting T., Lukas J., Bartek J., Strauss M. The retinoblastoma protein modulates expression of genes coding for diverse classes of proteins including components of the extracellular matrix. Oncogene. 1996 Jun 6;12(11):2393–2401. [PubMed] [Google Scholar]
  22. Scarpulla R. C. Nuclear control of respiratory chain expression in mammalian cells. J Bioenerg Biomembr. 1997 Apr;29(2):109–119. doi: 10.1023/a:1022681828846. [DOI] [PubMed] [Google Scholar]
  23. Schilling L. J., Farnham P. J. The bidirectionally transcribed dihydrofolate reductase and rep-3a promoters are growth regulated by distinct mechanisms. Cell Growth Differ. 1995 May;6(5):541–548. [PubMed] [Google Scholar]
  24. Slansky J. E., Farnham P. J. Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol. 1996;208:1–30. doi: 10.1007/978-3-642-79910-5_1. [DOI] [PubMed] [Google Scholar]
  25. Slansky J. E., Farnham P. J. Transcriptional regulation of the dihydrofolate reductase gene. Bioessays. 1996 Jan;18(1):55–62. doi: 10.1002/bies.950180111. [DOI] [PubMed] [Google Scholar]
  26. Tominaga K., Akiyama S., Kagawa Y., Ohta S. Upstream region of a genomic gene for human mitochondrial transcription factor 1. Biochim Biophys Acta. 1992 Jun 15;1131(2):217–219. doi: 10.1016/0167-4781(92)90082-b. [DOI] [PubMed] [Google Scholar]
  27. Tommasi S., Pfeifer G. P. Constitutive protection of E2F recognition sequences in the human thymidine kinase promoter during cell cycle progression. J Biol Chem. 1997 Nov 28;272(48):30483–30490. doi: 10.1074/jbc.272.48.30483. [DOI] [PubMed] [Google Scholar]
  28. Torroni A., Stepien G., Hodge J. A., Wallace D. C. Neoplastic transformation is associated with coordinate induction of nuclear and cytoplasmic oxidative phosphorylation genes. J Biol Chem. 1990 Nov 25;265(33):20589–20593. [PubMed] [Google Scholar]
  29. Trimarchi J. M., Fairchild B., Verona R., Moberg K., Andon N., Lees J. A. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2850–2855. doi: 10.1073/pnas.95.6.2850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wells J., Held P., Illenye S., Heintz N. H. Protein-DNA interactions at the major and minor promoters of the divergently transcribed dhfr and rep3 genes during the Chinese hamster ovary cell cycle. Mol Cell Biol. 1996 Feb;16(2):634–647. doi: 10.1128/mcb.16.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., Mootha V., Troy A., Cinti S., Lowell B., Scarpulla R. C. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999 Jul 9;98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X. [DOI] [PubMed] [Google Scholar]
  32. Xu M., Sheppard K. A., Peng C. Y., Yee A. S., Piwnica-Worms H. Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol. 1994 Dec;14(12):8420–8431. doi: 10.1128/mcb.14.12.8420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamaguchi M., Hayashi Y., Hirose F., Nishimoto Y., Matsukage A. Distinct roles of E2F recognition sites as positive or negative elements in regulation of the DNA polymerase alpha 180 kDa catalytic subunit gene promoter during Drosophila development. Nucleic Acids Res. 1997 Oct 1;25(19):3847–3854. doi: 10.1093/nar/25.19.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Ginkel P. R., Hsiao K. M., Schjerven H., Farnham P. J. E2F-mediated growth regulation requires transcription factor cooperation. J Biol Chem. 1997 Jul 18;272(29):18367–18374. doi: 10.1074/jbc.272.29.18367. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES