Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 1;351(Pt 1):19–31. doi: 10.1042/0264-6021:3510019

Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities.

S Dowler 1, R A Currie 1, D G Campbell 1, M Deak 1, G Kular 1, C P Downes 1, D R Alessi 1
PMCID: PMC1221362  PMID: 11001876

Abstract

The second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is generated by the action of phosphoinositide 3-kinase (PI 3-kinase), and regulates a plethora of cellular processes. An approach for dissecting the mechanisms by which these processes are regulated is to identify proteins that interact specifically with PtdIns(3,4,5)P(3). The pleckstrin homology (PH) domain has become recognized as the specialized module used by many proteins to interact with PtdIns(3,4,5)P(3). Recent work has led to the identification of a putative phosphatidylinositol 3,4,5-trisphosphate-binding motif (PPBM) at the N-terminal regions of PH domains that interact with this lipid. We have searched expressed sequence tag databases for novel proteins containing PH domains possessing a PPBM. Surprisingly, many of the PH domains that we identified do not bind PtdIns(3,4,5)P(3), but instead possess unexpected and novel phosphoinositide-binding specificities in vitro. These include proteins possessing PH domains that interact specifically with PtdIns(3,4)P(2) [TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns4P [FAPP1 (phosphatidylinositol-four-phosphate adaptor protein-1)], PtdIns3P [PEPP1 (phosphatidylinositol-three-phosphate-binding PH-domain protein-1) and AtPH1] and PtdIns(3,5)P(2) (centaurin-beta2). We have also identified two related homologues of PEPP1, termed PEPP2 and PEPP3, that may also interact with PtdIns3P. This study lays the foundation for future work to establish the phospholipid-binding specificities of these proteins in vivo, and their physiological role(s).

Full Text

The Full Text of this article is available as a PDF (542.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed] [Google Scholar]
  2. Banfić H., Tang X., Batty I. H., Downes C. P., Chen C., Rittenhouse S. E. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem. 1998 Jan 2;273(1):13–16. doi: 10.1074/jbc.273.1.13. [DOI] [PubMed] [Google Scholar]
  3. Baraldi E., Djinovic Carugo K., Hyvönen M., Surdo P. L., Riley A. M., Potter B. V., O'Brien R., Ladbury J. E., Saraste M. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure. 1999 Apr 15;7(4):449–460. doi: 10.1016/s0969-2126(99)80057-4. [DOI] [PubMed] [Google Scholar]
  4. Chavrier P., Goud B. The role of ARF and Rab GTPases in membrane transport. Curr Opin Cell Biol. 1999 Aug;11(4):466–475. doi: 10.1016/S0955-0674(99)80067-2. [DOI] [PubMed] [Google Scholar]
  5. Cooke F. T., Dove S. K., McEwen R. K., Painter G., Holmes A. B., Hall M. N., Michell R. H., Parker P. J. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol. 1998 Nov 5;8(22):1219–1222. doi: 10.1016/s0960-9822(07)00513-1. [DOI] [PubMed] [Google Scholar]
  6. Cui X., De Vivo I., Slany R., Miyamoto A., Firestein R., Cleary M. L. Association of SET domain and myotubularin-related proteins modulates growth control. Nat Genet. 1998 Apr;18(4):331–337. doi: 10.1038/ng0498-331. [DOI] [PubMed] [Google Scholar]
  7. Currie R. A., Walker K. S., Gray A., Deak M., Casamayor A., Downes C. P., Cohen P., Alessi D. R., Lucocq J. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999 Feb 1;337(Pt 3):575–583. [PMC free article] [PubMed] [Google Scholar]
  8. Deak M., Casamayor A., Currie R. A., Downes C. P., Alessi D. R. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett. 1999 May 28;451(3):220–226. doi: 10.1016/s0014-5793(99)00556-6. [DOI] [PubMed] [Google Scholar]
  9. Dove S. K., Cooke F. T., Douglas M. R., Sayers L. G., Parker P. J., Michell R. H. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature. 1997 Nov 13;390(6656):187–192. doi: 10.1038/36613. [DOI] [PubMed] [Google Scholar]
  10. Dowler S., Currie R. A., Downes C. P., Alessi D. R. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 1999 Aug 15;342(Pt 1):7–12. [PMC free article] [PubMed] [Google Scholar]
  11. Dowler S., Montalvo L., Cantrell D., Morrice N., Alessi D. R. Phosphoinositide 3-kinase-dependent phosphorylation of the dual adaptor for phosphotyrosine and 3-phosphoinositides by the Src family of tyrosine kinase. Biochem J. 2000 Jul 15;349(Pt 2):605–610. doi: 10.1042/0264-6021:3490605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ferguson K. M., Lemmon M. A., Schlessinger J., Sigler P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 1995 Dec 15;83(6):1037–1046. doi: 10.1016/0092-8674(95)90219-8. [DOI] [PubMed] [Google Scholar]
  13. Fruman D. A., Rameh L. E., Cantley L. C. Phosphoinositide binding domains: embracing 3-phosphate. Cell. 1999 Jun 25;97(7):817–820. doi: 10.1016/s0092-8674(00)80792-8. [DOI] [PubMed] [Google Scholar]
  14. Gray A., Van Der Kaay J., Downes C. P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J. 1999 Dec 15;344(Pt 3):929–936. [PMC free article] [PubMed] [Google Scholar]
  15. Hu M. H., Bauman E. M., Roll R. L., Yeilding N., Abrams C. S. Pleckstrin 2, a widely expressed paralog of pleckstrin involved in actin rearrangement. J Biol Chem. 1999 Jul 30;274(31):21515–21518. doi: 10.1074/jbc.274.31.21515. [DOI] [PubMed] [Google Scholar]
  16. Inazu T., Yamada K., Miyamoto K. Cloning and expression of pleckstrin 2, a novel member of the pleckstrin family. Biochem Biophys Res Commun. 1999 Nov;265(1):87–93. doi: 10.1006/bbrc.1999.1461. [DOI] [PubMed] [Google Scholar]
  17. Isakoff S. J., Cardozo T., Andreev J., Li Z., Ferguson K. M., Abagyan R., Lemmon M. A., Aronheim A., Skolnik E. Y. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 1998 Sep 15;17(18):5374–5387. doi: 10.1093/emboj/17.18.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kam J. L., Miura K., Jackson T. R., Gruschus J., Roller P., Stauffer S., Clark J., Aneja R., Randazzo P. A. Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J Biol Chem. 2000 Mar 31;275(13):9653–9663. doi: 10.1074/jbc.275.13.9653. [DOI] [PubMed] [Google Scholar]
  19. Klarlund J. K., Rameh L. E., Cantley L. C., Buxton J. M., Holik J. J., Sakelis C., Patki V., Corvera S., Czech M. P. Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 Jan 23;273(4):1859–1862. doi: 10.1074/jbc.273.4.1859. [DOI] [PubMed] [Google Scholar]
  20. Kornau H. C., Schenker L. T., Kennedy M. B., Seeburg P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 1995 Sep 22;269(5231):1737–1740. doi: 10.1126/science.7569905. [DOI] [PubMed] [Google Scholar]
  21. Krappa R., Nguyen A., Burrola P., Deretic D., Lemke G. Evectins: vesicular proteins that carry a pleckstrin homology domain and localize to post-Golgi membranes. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4633–4638. doi: 10.1073/pnas.96.8.4633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leevers S. J., Vanhaesebroeck B., Waterfield M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999 Apr;11(2):219–225. doi: 10.1016/s0955-0674(99)80029-5. [DOI] [PubMed] [Google Scholar]
  23. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  24. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  25. Levi L., Hanukoglu I., Raikhinstein M., Kohen F., Koch Y. Cloning of LL5, a novel protein encoding cDNA from a rat pituitary library. Biochim Biophys Acta. 1993 Nov 16;1216(2):342–344. doi: 10.1016/0167-4781(93)90171-9. [DOI] [PubMed] [Google Scholar]
  26. Li Z., Wahl M. I., Eguinoa A., Stephens L. R., Hawkins P. T., Witte O. N. Phosphatidylinositol 3-kinase-gamma activates Bruton's tyrosine kinase in concert with Src family kinases. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13820–13825. doi: 10.1073/pnas.94.25.13820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Munnik T., Irvine R. F., Musgrave A. Phospholipid signalling in plants. Biochim Biophys Acta. 1998 Jan 23;1389(3):222–272. doi: 10.1016/s0005-2760(97)00158-6. [DOI] [PubMed] [Google Scholar]
  28. Nagase T., Ishikawa K., Suyama M., Kikuno R., Hirosawa M., Miyajima N., Tanaka A., Kotani H., Nomura N., Ohara O. Prediction of the coding sequences of unidentified human genes. XIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 1999 Feb 26;6(1):63–70. doi: 10.1093/dnares/6.1.63. [DOI] [PubMed] [Google Scholar]
  29. Odorizzi G., Babst M., Emr S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell. 1998 Dec 11;95(6):847–858. doi: 10.1016/s0092-8674(00)81707-9. [DOI] [PubMed] [Google Scholar]
  30. Randazzo P. A., Andrade J., Miura K., Brown M. T., Long Y. Q., Stauffer S., Roller P., Cooper J. A. The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4011–4016. doi: 10.1073/pnas.070552297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Razzini G., Brancaccio A., Lemmon M. A., Guarnieri S., Falasca M. The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase Cbeta(1). J Biol Chem. 2000 May 19;275(20):14873–14881. doi: 10.1074/jbc.275.20.14873. [DOI] [PubMed] [Google Scholar]
  32. Rodrigues G. A., Falasca M., Zhang Z., Ong S. H., Schlessinger J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol. 2000 Feb;20(4):1448–1459. doi: 10.1128/mcb.20.4.1448-1459.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rotin D. WW (WWP) domains: from structure to function. Curr Top Microbiol Immunol. 1998;228:115–133. doi: 10.1007/978-3-642-80481-6_5. [DOI] [PubMed] [Google Scholar]
  34. Songyang Z., Fanning A. S., Fu C., Xu J., Marfatia S. M., Chishti A. H., Crompton A., Chan A. C., Anderson J. M., Cantley L. C. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 1997 Jan 3;275(5296):73–77. doi: 10.1126/science.275.5296.73. [DOI] [PubMed] [Google Scholar]
  35. Stenmark H., Aasland R. FYVE-finger proteins--effectors of an inositol lipid. J Cell Sci. 1999 Dec;112(Pt 23):4175–4183. doi: 10.1242/jcs.112.23.4175. [DOI] [PubMed] [Google Scholar]
  36. Stevenson J. M., Perera I. Y., Boss W. F. A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem. 1998 Aug 28;273(35):22761–22767. doi: 10.1074/jbc.273.35.22761. [DOI] [PubMed] [Google Scholar]
  37. Van der Kaay J., Beck M., Gray A., Downes C. P. Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem. 1999 Dec 10;274(50):35963–35968. doi: 10.1074/jbc.274.50.35963. [DOI] [PubMed] [Google Scholar]
  38. Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
  39. Venkateswarlu K., Oatey P. B., Tavaré J. M., Jackson T. R., Cullen P. J. Identification of centaurin-alpha1 as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1. Biochem J. 1999 Jun 1;340(Pt 2):359–363. [PMC free article] [PubMed] [Google Scholar]
  40. Wang T., Pentyala S., Rebecchi M. J., Scarlata S. Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry. 1999 Feb 2;38(5):1517–1524. doi: 10.1021/bi982008f. [DOI] [PubMed] [Google Scholar]
  41. Wurmser A. E., Gary J. D., Emr S. D. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem. 1999 Apr 2;274(14):9129–9132. doi: 10.1074/jbc.274.14.9129. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES