Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Oct 15;351(Pt 2):289–305.

Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.

W Kolch 1
PMCID: PMC1221363  PMID: 11023813

Abstract

The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.

Full Text

The Full Text of this article is available as a PDF (525.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham D., Podar K., Pacher M., Kubicek M., Welzel N., Hemmings B. A., Dilworth S. M., Mischak H., Kolch W., Baccarini M. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem. 2000 Jul 21;275(29):22300–22304. doi: 10.1074/jbc.M003259200. [DOI] [PubMed] [Google Scholar]
  2. Adachi M., Fukuda M., Nishida E. Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J. 1999 Oct 1;18(19):5347–5358. doi: 10.1093/emboj/18.19.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. App H., Hazan R., Zilberstein A., Ullrich A., Schlessinger J., Rapp U. Epidermal growth factor (EGF) stimulates association and kinase activity of Raf-1 with the EGF receptor. Mol Cell Biol. 1991 Feb;11(2):913–919. doi: 10.1128/mcb.11.2.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Avruch J., Zhang X. F., Kyriakis J. M. Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci. 1994 Jul;19(7):279–283. doi: 10.1016/0968-0004(94)90005-1. [DOI] [PubMed] [Google Scholar]
  5. Belich M. P., Salmerón A., Johnston L. H., Ley S. C. TPL-2 kinase regulates the proteolysis of the NF-kappaB-inhibitory protein NF-kappaB1 p105. Nature. 1999 Jan 28;397(6717):363–368. doi: 10.1038/16946. [DOI] [PubMed] [Google Scholar]
  6. Bell B., Xing H., Yan K., Gautam N., Muslin A. J. KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation. J Biol Chem. 1999 Mar 19;274(12):7982–7986. doi: 10.1074/jbc.274.12.7982. [DOI] [PubMed] [Google Scholar]
  7. Blanco-Aparicio C., Torres J., Pulido R. A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J Cell Biol. 1999 Dec 13;147(6):1129–1136. doi: 10.1083/jcb.147.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boldyreff B., Issinger O. G. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit. FEBS Lett. 1997 Feb 17;403(2):197–199. doi: 10.1016/s0014-5793(97)00010-0. [DOI] [PubMed] [Google Scholar]
  9. Braselmann S., McCormick F. Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J. 1995 Oct 2;14(19):4839–4848. doi: 10.1002/j.1460-2075.1995.tb00165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brtva T. R., Drugan J. K., Ghosh S., Terrell R. S., Campbell-Burk S., Bell R. M., Der C. J. Two distinct Raf domains mediate interaction with Ras. J Biol Chem. 1995 Apr 28;270(17):9809–9812. doi: 10.1074/jbc.270.17.9809. [DOI] [PubMed] [Google Scholar]
  11. Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/s0092-8674(00)80595-4. [DOI] [PubMed] [Google Scholar]
  12. Brunet A., Roux D., Lenormand P., Dowd S., Keyse S., Pouysségur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 1999 Feb 1;18(3):664–674. doi: 10.1093/emboj/18.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cacace A. M., Michaud N. R., Therrien M., Mathes K., Copeland T., Rubin G. M., Morrison D. K. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol. 1999 Jan;19(1):229–240. doi: 10.1128/mcb.19.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clark G. J., Drugan J. K., Rossman K. L., Carpenter J. W., Rogers-Graham K., Fu H., Der C. J., Campbell S. L. 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J Biol Chem. 1997 Aug 22;272(34):20990–20993. doi: 10.1074/jbc.272.34.20990. [DOI] [PubMed] [Google Scholar]
  15. Clark G. J., Kinch M. S., Rogers-Graham K., Sebti S. M., Hamilton A. D., Der C. J. The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem. 1997 Apr 18;272(16):10608–10615. doi: 10.1074/jbc.272.16.10608. [DOI] [PubMed] [Google Scholar]
  16. Cleghon V., Morrison D. K. Raf-1 interacts with Fyn and Src in a non-phosphotyrosine-dependent manner. J Biol Chem. 1994 Jul 1;269(26):17749–17755. [PubMed] [Google Scholar]
  17. Coss M. C., Stephens R. M., Morrison D. K., Winterstein D., Smith L. M., Simek S. L. The immunophilin FKBP65 forms an association with the serine/threonine kinase c-Raf-1. Cell Growth Differ. 1998 Jan;9(1):41–48. [PubMed] [Google Scholar]
  18. Cutforth T., Rubin G. M. Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell. 1994 Jul 1;77(7):1027–1036. doi: 10.1016/0092-8674(94)90442-1. [DOI] [PubMed] [Google Scholar]
  19. Cutler R. E., Jr, Stephens R. M., Saracino M. R., Morrison D. K. Autoregulation of the Raf-1 serine/threonine kinase. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9214–9219. doi: 10.1073/pnas.95.16.9214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Daub M., Jöckel J., Quack T., Weber C. K., Schmitz F., Rapp U. R., Wittinghofer A., Block C. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Mol Cell Biol. 1998 Nov;18(11):6698–6710. doi: 10.1128/mcb.18.11.6698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Denouel-Galy A., Douville E. M., Warne P. H., Papin C., Laugier D., Calothy G., Downward J., Eychène A. Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr Biol. 1998 Jan 1;8(1):46–55. doi: 10.1016/s0960-9822(98)70019-3. [DOI] [PubMed] [Google Scholar]
  22. Dent P., Haser W., Haystead T. A., Vincent L. A., Roberts T. M., Sturgill T. W. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 1992 Sep 4;257(5075):1404–1407. doi: 10.1126/science.1326789. [DOI] [PubMed] [Google Scholar]
  23. Dhanasekaran N., Premkumar Reddy E. Signaling by dual specificity kinases. Oncogene. 1998 Sep 17;17(11 REVIEWS):1447–1455. doi: 10.1038/sj.onc.1202251. [DOI] [PubMed] [Google Scholar]
  24. Diaz B., Barnard D., Filson A., MacDonald S., King A., Marshall M. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol Cell Biol. 1997 Aug;17(8):4509–4516. doi: 10.1128/mcb.17.8.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Downward J. KSR: a novel player in the RAS pathway. Cell. 1995 Dec 15;83(6):831–834. doi: 10.1016/0092-8674(95)90198-1. [DOI] [PubMed] [Google Scholar]
  26. English J. M., Pearson G., Hockenberry T., Shivakumar L., White M. A., Cobb M. H. Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J Biol Chem. 1999 Oct 29;274(44):31588–31592. doi: 10.1074/jbc.274.44.31588. [DOI] [PubMed] [Google Scholar]
  27. Fabian J. R., Daar I. O., Morrison D. K. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol. 1993 Nov;13(11):7170–7179. doi: 10.1128/mcb.13.11.7170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Fantl W. J., Muslin A. J., Kikuchi A., Martin J. A., MacNicol A. M., Gross R. W., Williams L. T. Activation of Raf-1 by 14-3-3 proteins. Nature. 1994 Oct 13;371(6498):612–614. doi: 10.1038/371612a0. [DOI] [PubMed] [Google Scholar]
  29. Farrar M. A., Alberol-Ila J., Perlmutter R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature. 1996 Sep 12;383(6596):178–181. doi: 10.1038/383178a0. [DOI] [PubMed] [Google Scholar]
  30. Finnie C., Borch J., Collinge D. B. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol Biol. 1999 Jul;40(4):545–554. doi: 10.1023/a:1006211014713. [DOI] [PubMed] [Google Scholar]
  31. Freed E., Symons M., Macdonald S. G., McCormick F., Ruggieri R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994 Sep 16;265(5179):1713–1716. doi: 10.1126/science.8085158. [DOI] [PubMed] [Google Scholar]
  32. Frost J. A., Steen H., Shapiro P., Lewis T., Ahn N., Shaw P. E., Cobb M. H. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 1997 Nov 3;16(21):6426–6438. doi: 10.1093/emboj/16.21.6426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Fu H., Subramanian R. R., Masters S. C. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000;40:617–647. doi: 10.1146/annurev.pharmtox.40.1.617. [DOI] [PubMed] [Google Scholar]
  34. Fukuyama K., Yoshida M., Yamashita A., Deyama T., Baba M., Suzuki A., Mohri H., Ikezawa Z., Nakajima H., Hirai S. MAPK upstream kinase (MUK)-binding inhibitory protein, a negative regulator of MUK/dual leucine zipper-bearing kinase/leucine zipper protein kinase. J Biol Chem. 2000 Jul 14;275(28):21247–21254. doi: 10.1074/jbc.M001488200. [DOI] [PubMed] [Google Scholar]
  35. Galaktionov K., Jessus C., Beach D. Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev. 1995 May 1;9(9):1046–1058. doi: 10.1101/gad.9.9.1046. [DOI] [PubMed] [Google Scholar]
  36. Gavin A. C., Nebreda A. R. A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. Curr Biol. 1999 Mar 11;9(5):281–284. doi: 10.1016/s0960-9822(99)80120-1. [DOI] [PubMed] [Google Scholar]
  37. Graham S. M., Vojtek A. B., Huff S. Y., Cox A. D., Clark G. J., Cooper J. A., Der C. J. TC21 causes transformation by Raf-independent signaling pathways. Mol Cell Biol. 1996 Nov;16(11):6132–6140. doi: 10.1128/mcb.16.11.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Grammatikakis N., Lin J. H., Grammatikakis A., Tsichlis P. N., Cochran B. H. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol. 1999 Mar;19(3):1661–1672. doi: 10.1128/mcb.19.3.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Guerra B., Boldyreff B., Sarno S., Cesaro L., Issinger O. G., Pinna L. A. CK2: a protein kinase in need of control. Pharmacol Ther. 1999 May-Jun;82(2-3):303–313. doi: 10.1016/s0163-7258(98)00064-3. [DOI] [PubMed] [Google Scholar]
  40. Gutkind J. S. Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene. 1998 Sep 17;17(11 REVIEWS):1331–1342. doi: 10.1038/sj.onc.1202186. [DOI] [PubMed] [Google Scholar]
  41. Hagemann C., Kalmes A., Wixler V., Wixler L., Schuster T., Rapp U. R. The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett. 1997 Feb 17;403(2):200–202. doi: 10.1016/s0014-5793(97)00011-2. [DOI] [PubMed] [Google Scholar]
  42. Hagemann C., Rapp U. R. Isotype-specific functions of Raf kinases. Exp Cell Res. 1999 Nov 25;253(1):34–46. doi: 10.1006/excr.1999.4689. [DOI] [PubMed] [Google Scholar]
  43. Hall-Jackson C. A., Eyers P. A., Cohen P., Goedert M., Boyle F. T., Hewitt N., Plant H., Hedge P. Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol. 1999 Aug;6(8):559–568. doi: 10.1016/s1074-5521(99)80088-x. [DOI] [PubMed] [Google Scholar]
  44. Hall-Jackson C. A., Goedert M., Hedge P., Cohen P. Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene. 1999 Mar 25;18(12):2047–2054. doi: 10.1038/sj.onc.1202603. [DOI] [PubMed] [Google Scholar]
  45. Han M., Golden A., Han Y., Sternberg P. W. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature. 1993 May 13;363(6425):133–140. doi: 10.1038/363133a0. [DOI] [PubMed] [Google Scholar]
  46. Hu C. D., Kariya K. i., Kotani G., Shirouzu M., Yokoyama S., Kataoka T. Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with ras-dependent activation of Raf-1. J Biol Chem. 1997 May 2;272(18):11702–11705. doi: 10.1074/jbc.272.18.11702. [DOI] [PubMed] [Google Scholar]
  47. Hu C. D., Kariya K., Tamada M., Akasaka K., Shirouzu M., Yokoyama S., Kataoka T. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J Biol Chem. 1995 Dec 22;270(51):30274–30277. doi: 10.1074/jbc.270.51.30274. [DOI] [PubMed] [Google Scholar]
  48. Häfner S., Adler H. S., Mischak H., Janosch P., Heidecker G., Wolfman A., Pippig S., Lohse M., Ueffing M., Kolch W. Mechanism of inhibition of Raf-1 by protein kinase A. Mol Cell Biol. 1994 Oct;14(10):6696–6703. doi: 10.1128/mcb.14.10.6696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Höhfeld J., Jentsch S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 1997 Oct 15;16(20):6209–6216. doi: 10.1093/emboj/16.20.6209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Inouye K., Mizutani S., Koide H., Kaziro Y. Formation of the Ras dimer is essential for Raf-1 activation. J Biol Chem. 2000 Feb 11;275(6):3737–3740. doi: 10.1074/jbc.275.6.3737. [DOI] [PubMed] [Google Scholar]
  51. Irie K., Gotoh Y., Yashar B. M., Errede B., Nishida E., Matsumoto K. Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science. 1994 Sep 16;265(5179):1716–1719. doi: 10.1126/science.8085159. [DOI] [PubMed] [Google Scholar]
  52. Jacobs D., Glossip D., Xing H., Muslin A. J., Kornfeld K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 1999 Jan 15;13(2):163–175. [PMC free article] [PubMed] [Google Scholar]
  53. Jaiswal R. K., Weissinger E., Kolch W., Landreth G. E. Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J Biol Chem. 1996 Sep 27;271(39):23626–23629. doi: 10.1074/jbc.271.39.23626. [DOI] [PubMed] [Google Scholar]
  54. Janosch P., Schellerer M., Seitz T., Reim P., Eulitz M., Brielmeier M., Kölch W., Sedivy J. M., Mischak H. Characterization of IkappaB kinases. IkappaB-alpha is not phosphorylated by Raf-1 or protein kinase C isozymes, but is a casein kinase II substrate. J Biol Chem. 1996 Jun 7;271(23):13868–13874. doi: 10.1074/jbc.271.23.13868. [DOI] [PubMed] [Google Scholar]
  55. Jelinek T., Catling A. D., Reuter C. W., Moodie S. A., Wolfman A., Weber M. J. RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2. Mol Cell Biol. 1994 Dec;14(12):8212–8218. doi: 10.1128/mcb.14.12.8212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Joneson T., Fulton J. A., Volle D. J., Chaika O. V., Bar-Sagi D., Lewis R. E. Kinase suppressor of Ras inhibits the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase by growth factors, activated Ras, and Ras effectors. J Biol Chem. 1998 Mar 27;273(13):7743–7748. doi: 10.1074/jbc.273.13.7743. [DOI] [PubMed] [Google Scholar]
  57. Kalmes A., Hagemann C., Weber C. K., Wixler L., Schuster T., Rapp U. R. Interaction between the protein kinase B-Raf and the alpha-subunit of the 11S proteasome regulator. Cancer Res. 1998 Jul 15;58(14):2986–2990. [PubMed] [Google Scholar]
  58. Karin M., Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 2000 Feb;12(1):85–98. doi: 10.1006/smim.2000.0210. [DOI] [PubMed] [Google Scholar]
  59. Khosravi-Far R., Campbell S., Rossman K. L., Der C. J. Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res. 1998;72:57–107. doi: 10.1016/s0065-230x(08)60700-9. [DOI] [PubMed] [Google Scholar]
  60. Kieser A., Seitz T., Adler H. S., Coffer P., Kremmer E., Crespo P., Gutkind J. S., Henderson D. W., Mushinski J. F., Kolch W. Protein kinase C-zeta reverts v-raf transformation of NIH-3T3 cells. Genes Dev. 1996 Jun 15;10(12):1455–1466. doi: 10.1101/gad.10.12.1455. [DOI] [PubMed] [Google Scholar]
  61. Kikuchi A., Williams L. T. The post-translational modification of ras p21 is important for Raf-1 activation. J Biol Chem. 1994 Aug 5;269(31):20054–20059. [PubMed] [Google Scholar]
  62. Kimura Y., Rutherford S. L., Miyata Y., Yahara I., Freeman B. C., Yue L., Morimoto R. I., Lindquist S. Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 1997 Jul 15;11(14):1775–1785. doi: 10.1101/gad.11.14.1775. [DOI] [PubMed] [Google Scholar]
  63. King A. J., Sun H., Diaz B., Barnard D., Miao W., Bagrodia S., Marshall M. S. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature. 1998 Nov 12;396(6707):180–183. doi: 10.1038/24184. [DOI] [PubMed] [Google Scholar]
  64. Kockel L., Vorbrüggen G., Jäckle H., Mlodzik M., Bohmann D. Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev. 1997 May 1;11(9):1140–1147. doi: 10.1101/gad.11.9.1140. [DOI] [PubMed] [Google Scholar]
  65. Kolch W., Heidecker G., Lloyd P., Rapp U. R. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature. 1991 Jan 31;349(6308):426–428. doi: 10.1038/349426a0. [DOI] [PubMed] [Google Scholar]
  66. Kortenjann M., Shaw P. E. Raf-1 kinase and ERK2 uncoupled from mitogenic signals in rat fibroblasts. Oncogene. 1995 Nov 16;11(10):2105–2112. [PubMed] [Google Scholar]
  67. Kozutsumi H., Toyoshima H., Hagiwara K., Yazaki Y., Hirai H. Human ltk receptor tyrosine kinase binds to PLC-gamma 1, PI3-K, GAP and Raf-1 in vivo. Oncogene. 1994 Oct;9(10):2991–2998. [PubMed] [Google Scholar]
  68. Kuo W. L., Abe M., Rhee J., Eves E. M., McCarthy S. A., Yan M., Templeton D. J., McMahon M., Rosner M. R. Raf, but not MEK or ERK, is sufficient for differentiation of hippocampal neuronal cells. Mol Cell Biol. 1996 Apr;16(4):1458–1470. doi: 10.1128/mcb.16.4.1458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kuroda S., Ohtsuka T., Yamamori B., Fukui K., Shimizu K., Takai Y. Different effects of various phospholipids on Ki-Ras-, Ha-Ras-, and Rap1B-induced B-Raf activation. J Biol Chem. 1996 Jun 21;271(25):14680–14683. doi: 10.1074/jbc.271.25.14680. [DOI] [PubMed] [Google Scholar]
  70. Kyriakis J. M., App H., Zhang X. F., Banerjee P., Brautigan D. L., Rapp U. R., Avruch J. Raf-1 activates MAP kinase-kinase. Nature. 1992 Jul 30;358(6385):417–421. doi: 10.1038/358417a0. [DOI] [PubMed] [Google Scholar]
  71. Lackner M. R., Kornfeld K., Miller L. M., Horvitz H. R., Kim S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 1994 Jan;8(2):160–173. doi: 10.1101/gad.8.2.160. [DOI] [PubMed] [Google Scholar]
  72. Lee A. W. Synergistic activation of mitogen-activated protein kinase by cyclic AMP and myeloid growth factors opposes cyclic AMP's growth-inhibitory effects. Blood. 1999 Jan 15;93(2):537–553. [PubMed] [Google Scholar]
  73. Leevers S. J., Paterson H. F., Marshall C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 1994 Jun 2;369(6479):411–414. doi: 10.1038/369411a0. [DOI] [PubMed] [Google Scholar]
  74. Lenormand P., Brondello J. M., Brunet A., Pouysségur J. Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol. 1998 Aug 10;142(3):625–633. doi: 10.1083/jcb.142.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Lewis T. S., Shapiro P. S., Ahn N. G. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998;74:49–139. doi: 10.1016/s0065-230x(08)60765-4. [DOI] [PubMed] [Google Scholar]
  76. Li S., Janosch P., Tanji M., Rosenfeld G. C., Waymire J. C., Mischak H., Kolch W., Sedivy J. M. Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins. EMBO J. 1995 Feb 15;14(4):685–696. doi: 10.1002/j.1460-2075.1995.tb07047.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Li W., Han M., Guan K. L. The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev. 2000 Apr 15;14(8):895–900. [PMC free article] [PubMed] [Google Scholar]
  78. Li W., Melnick M., Perrimon N. Dual function of Ras in Raf activation. Development. 1998 Dec;125(24):4999–5008. doi: 10.1242/dev.125.24.4999. [DOI] [PubMed] [Google Scholar]
  79. Li W., Skoulakis E. M., Davis R. L., Perrimon N. The Drosophila 14-3-3 protein Leonardo enhances Torso signaling through D-Raf in a Ras 1-dependent manner. Development. 1997 Oct;124(20):4163–4171. doi: 10.1242/dev.124.20.4163. [DOI] [PubMed] [Google Scholar]
  80. Lin J. H., Makris A., McMahon C., Bear S. E., Patriotis C., Prasad V. R., Brent R., Golemis E. A., Tsichlis P. N. The ankyrin repeat-containing adaptor protein Tvl-1 is a novel substrate and regulator of Raf-1. J Biol Chem. 1999 May 21;274(21):14706–14715. doi: 10.1074/jbc.274.21.14706. [DOI] [PubMed] [Google Scholar]
  81. Lin X., Cunningham E. T., Jr, Mu Y., Geleziunas R., Greene W. C. The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-kappaB acting through the NF-kappaB-inducing kinase and IkappaB kinases. Immunity. 1999 Feb;10(2):271–280. doi: 10.1016/s1074-7613(00)80027-8. [DOI] [PubMed] [Google Scholar]
  82. Liu D., Bienkowska J., Petosa C., Collier R. J., Fu H., Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature. 1995 Jul 13;376(6536):191–194. doi: 10.1038/376191a0. [DOI] [PubMed] [Google Scholar]
  83. Lundberg A. S., Weinberg R. A. Control of the cell cycle and apoptosis. Eur J Cancer. 1999 Dec;35(14):1886–1894. doi: 10.1016/s0959-8049(99)00292-0. [DOI] [PubMed] [Google Scholar]
  84. Luo Z. J., Zhang X. F., Rapp U., Avruch J. Identification of the 14.3.3 zeta domains important for self-association and Raf binding. J Biol Chem. 1995 Oct 6;270(40):23681–23687. doi: 10.1074/jbc.270.40.23681. [DOI] [PubMed] [Google Scholar]
  85. Luo Z., Diaz B., Marshall M. S., Avruch J. An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ. Mol Cell Biol. 1997 Jan;17(1):46–53. doi: 10.1128/mcb.17.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Luo Z., Tzivion G., Belshaw P. J., Vavvas D., Marshall M., Avruch J. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature. 1996 Sep 12;383(6596):181–185. doi: 10.1038/383181a0. [DOI] [PubMed] [Google Scholar]
  87. MacNicol M. C., Muslin A. J., MacNicol A. M. Disruption of the 14-3-3 binding site within the B-Raf kinase domain uncouples catalytic activity from PC12 cell differentiation. J Biol Chem. 2000 Feb 11;275(6):3803–3809. doi: 10.1074/jbc.275.6.3803. [DOI] [PubMed] [Google Scholar]
  88. Macdonald S. G., Crews C. M., Wu L., Driller J., Clark R., Erikson R. L., McCormick F. Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Mol Cell Biol. 1993 Nov;13(11):6615–6620. doi: 10.1128/mcb.13.11.6615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Majewski M., Nieborowska-Skorska M., Salomoni P., Slupianek A., Reiss K., Trotta R., Calabretta B., Skorski T. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res. 1999 Jun 15;59(12):2815–2819. [PubMed] [Google Scholar]
  90. Marais R., Light Y., Paterson H. F., Mason C. S., Marshall C. J. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem. 1997 Feb 14;272(7):4378–4383. doi: 10.1074/jbc.272.7.4378. [DOI] [PubMed] [Google Scholar]
  91. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  92. Maslinski W., Remillard B., Tsudo M., Strom T. B. Interleukin-2 (IL-2) induces tyrosine kinase-dependent translocation of active raf-1 from the IL-2 receptor into the cytosol. J Biol Chem. 1992 Aug 5;267(22):15281–15284. [PubMed] [Google Scholar]
  93. Mason C. S., Springer C. J., Cooper R. G., Superti-Furga G., Marshall C. J., Marais R. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 1999 Apr 15;18(8):2137–2148. doi: 10.1093/emboj/18.8.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Matsuda S., Suzuki-Fujimoto T., Minowa A., Ueno H., Katamura K., Koyasu S. Temperature-sensitive ZAP70 mutants degrading through a proteasome-independent pathway. Restoration of a kinase domain mutant by Cdc37. J Biol Chem. 1999 Dec 3;274(49):34515–34518. doi: 10.1074/jbc.274.49.34515. [DOI] [PubMed] [Google Scholar]
  95. McCormick F. Signal transduction. How receptors turn Ras on. Nature. 1993 May 6;363(6424):15–16. doi: 10.1038/363015a0. [DOI] [PubMed] [Google Scholar]
  96. McElhinny J. A., Trushin S. A., Bren G. D., Chester N., Paya C. V. Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol. 1996 Mar;16(3):899–906. doi: 10.1128/mcb.16.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Michaud N. R., Fabian J. R., Mathes K. D., Morrison D. K. 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol Cell Biol. 1995 Jun;15(6):3390–3397. doi: 10.1128/mcb.15.6.3390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Michaud N. R., Therrien M., Cacace A., Edsall L. C., Spiegel S., Rubin G. M., Morrison D. K. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12792–12796. doi: 10.1073/pnas.94.24.12792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Mineo C., Anderson R. G., White M. A. Physical association with ras enhances activation of membrane-bound raf (RafCAAX). J Biol Chem. 1997 Apr 18;272(16):10345–10348. doi: 10.1074/jbc.272.16.10345. [DOI] [PubMed] [Google Scholar]
  100. Mischak H., Seitz T., Janosch P., Eulitz M., Steen H., Schellerer M., Philipp A., Kolch W. Negative regulation of Raf-1 by phosphorylation of serine 621. Mol Cell Biol. 1996 Oct;16(10):5409–5418. doi: 10.1128/mcb.16.10.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Moodie S. A., Willumsen B. M., Weber M. J., Wolfman A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science. 1993 Jun 11;260(5114):1658–1661. doi: 10.1126/science.8503013. [DOI] [PubMed] [Google Scholar]
  102. Moodie S. A., Wolfman A. The 3Rs of life: Ras, Raf and growth regulation. Trends Genet. 1994 Feb;10(2):44–48. doi: 10.1016/0168-9525(94)90147-3. [DOI] [PubMed] [Google Scholar]
  103. Morrison D. K., Cutler R. E. The complexity of Raf-1 regulation. Curr Opin Cell Biol. 1997 Apr;9(2):174–179. doi: 10.1016/s0955-0674(97)80060-9. [DOI] [PubMed] [Google Scholar]
  104. Morrison D. K., Heidecker G., Rapp U. R., Copeland T. D. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem. 1993 Aug 15;268(23):17309–17316. [PubMed] [Google Scholar]
  105. Morrison D. K., Kaplan D. R., Escobedo J. A., Rapp U. R., Roberts T. M., Williams L. T. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell. 1989 Aug 25;58(4):649–657. doi: 10.1016/0092-8674(89)90100-1. [DOI] [PubMed] [Google Scholar]
  106. Morrison D. 14-3-3: modulators of signaling proteins? Science. 1994 Oct 7;266(5182):56–57. doi: 10.1126/science.7939645. [DOI] [PubMed] [Google Scholar]
  107. Muslin A. J., Tanner J. W., Allen P. M., Shaw A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996 Mar 22;84(6):889–897. doi: 10.1016/s0092-8674(00)81067-3. [DOI] [PubMed] [Google Scholar]
  108. Müller G., Storz P., Bourteele S., Döppler H., Pfizenmaier K., Mischak H., Philipp A., Kaiser C., Kolch W. Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. EMBO J. 1998 Feb 2;17(3):732–742. doi: 10.1093/emboj/17.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Nantel A., Huber M., Thomas D. Y. Localization of endogenous Grb10 to the mitochondria and its interaction with the mitochondrial-associated Raf-1 pool. J Biol Chem. 1999 Dec 10;274(50):35719–35724. doi: 10.1074/jbc.274.50.35719. [DOI] [PubMed] [Google Scholar]
  110. Nantel A., Mohammad-Ali K., Sherk J., Posner B. I., Thomas D. Y. Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases. J Biol Chem. 1998 Apr 24;273(17):10475–10484. doi: 10.1074/jbc.273.17.10475. [DOI] [PubMed] [Google Scholar]
  111. Nishida Y., Inoue Y. H., Tsuda L., Adachi-Yamada T., Lim Y. M., Hata M., Ha H. Y., Sugiyama S. The Raf/MAP kinase cascade in cell cycle regulation and differentiation in Drosophila. Cell Struct Funct. 1996 Oct;21(5):437–444. doi: 10.1247/csf.21.437. [DOI] [PubMed] [Google Scholar]
  112. Ohtsuka T., Shimizu K., Yamamori B., Kuroda S., Takai Y. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J Biol Chem. 1996 Jan 19;271(3):1258–1261. doi: 10.1074/jbc.271.3.1258. [DOI] [PubMed] [Google Scholar]
  113. Okada T., Hu C. D., Jin T. G., Kariya K., Yamawaki-Kataoka Y., Kataoka T. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Mol Cell Biol. 1999 Sep;19(9):6057–6064. doi: 10.1128/mcb.19.9.6057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Okada T., Masuda T., Shinkai M., Kariya K., Kataoka T. Post-translational modification of H-Ras is required for activation of, but not for association with, B-Raf. J Biol Chem. 1996 Mar 1;271(9):4671–4678. doi: 10.1074/jbc.271.9.4671. [DOI] [PubMed] [Google Scholar]
  115. Patriotis C., Makris A., Chernoff J., Tsichlis P. N. Tpl-2 acts in concert with Ras and Raf-1 to activate mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9755–9759. doi: 10.1073/pnas.91.21.9755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Piwnica-Worms H. Cell cycle. Fools rush in. Nature. 1999 Oct 7;401(6753):535–537. doi: 10.1038/44029. [DOI] [PubMed] [Google Scholar]
  117. Pumiglia K. M., LeVine H., Haske T., Habib T., Jove R., Decker S. J. A direct interaction between G-protein beta gamma subunits and the Raf-1 protein kinase. J Biol Chem. 1995 Jun 16;270(24):14251–14254. doi: 10.1074/jbc.270.24.14251. [DOI] [PubMed] [Google Scholar]
  118. Reuther G. W., Fu H., Cripe L. D., Collier R. J., Pendergast A. M. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science. 1994 Oct 7;266(5182):129–133. doi: 10.1126/science.7939633. [DOI] [PubMed] [Google Scholar]
  119. Robinson M. J., Cobb M. H. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997 Apr;9(2):180–186. doi: 10.1016/s0955-0674(97)80061-0. [DOI] [PubMed] [Google Scholar]
  120. Rommel C., Clarke B. A., Zimmermann S., Nuñez L., Rossman R., Reid K., Moelling K., Yancopoulos G. D., Glass D. J. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science. 1999 Nov 26;286(5445):1738–1741. doi: 10.1126/science.286.5445.1738. [DOI] [PubMed] [Google Scholar]
  121. Rommel C., Radziwill G., Lovrić J., Noeldeke J., Heinicke T., Jones D., Aitken A., Moelling K. Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene. 1996 Feb 1;12(3):609–619. [PubMed] [Google Scholar]
  122. Rosário M., Paterson H. F., Marshall C. J. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. EMBO J. 1999 Mar 1;18(5):1270–1279. doi: 10.1093/emboj/18.5.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Roy S., Lane A., Yan J., McPherson R., Hancock J. F. Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger. J Biol Chem. 1997 Aug 8;272(32):20139–20145. doi: 10.1074/jbc.272.32.20139. [DOI] [PubMed] [Google Scholar]
  124. Roy S., McPherson R. A., Apolloni A., Yan J., Lane A., Clyde-Smith J., Hancock J. F. 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol Cell Biol. 1998 Jul;18(7):3947–3955. doi: 10.1128/mcb.18.7.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Sakatsume M., Stancato L. F., David M., Silvennoinen O., Saharinen P., Pierce J., Larner A. C., Finbloom D. S. Interferon gamma activation of Raf-1 is Jak1-dependent and p21ras-independent. J Biol Chem. 1998 Jan 30;273(5):3021–3026. doi: 10.1074/jbc.273.5.3021. [DOI] [PubMed] [Google Scholar]
  126. Salmeron A., Ahmad T. B., Carlile G. W., Pappin D., Narsimhan R. P., Ley S. C. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J. 1996 Feb 15;15(4):817–826. [PMC free article] [PubMed] [Google Scholar]
  127. Salomoni P., Wasik M. A., Riedel R. F., Reiss K., Choi J. K., Skorski T., Calabretta B. Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. J Exp Med. 1998 Jun 15;187(12):1995–2007. doi: 10.1084/jem.187.12.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Sawyers C. L. Chronic myeloid leukemia. N Engl J Med. 1999 Apr 29;340(17):1330–1340. doi: 10.1056/NEJM199904293401706. [DOI] [PubMed] [Google Scholar]
  129. Saxena M., Williams S., Taskén K., Mustelin T. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nat Cell Biol. 1999 Sep;1(5):305–311. doi: 10.1038/13024. [DOI] [PubMed] [Google Scholar]
  130. Schaeffer H. J., Catling A. D., Eblen S. T., Collier L. S., Krauss A., Weber M. J. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science. 1998 Sep 11;281(5383):1668–1671. doi: 10.1126/science.281.5383.1668. [DOI] [PubMed] [Google Scholar]
  131. Schaeffer H. J., Weber M. J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 1999 Apr;19(4):2435–2444. doi: 10.1128/mcb.19.4.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Schoentgen F., Jollès P. From structure to function: possible biological roles of a new widespread protein family binding hydrophobic ligands and displaying a nucleotide binding site. FEBS Lett. 1995 Aug 1;369(1):22–26. doi: 10.1016/0014-5793(95)00376-k. [DOI] [PubMed] [Google Scholar]
  133. Schulte T. W., An W. G., Neckers L. M. Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun. 1997 Oct 29;239(3):655–659. doi: 10.1006/bbrc.1997.7527. [DOI] [PubMed] [Google Scholar]
  134. Schulte T. W., Blagosklonny M. V., Ingui C., Neckers L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem. 1995 Oct 13;270(41):24585–24588. doi: 10.1074/jbc.270.41.24585. [DOI] [PubMed] [Google Scholar]
  135. Sieburth D. S., Sundaram M., Howard R. M., Han M. A PP2A regulatory subunit positively regulates Ras-mediated signaling during Caenorhabditis elegans vulval induction. Genes Dev. 1999 Oct 1;13(19):2562–2569. doi: 10.1101/gad.13.19.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Silverstein A. M., Grammatikakis N., Cochran B. H., Chinkers M., Pratt W. B. p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J Biol Chem. 1998 Aug 7;273(32):20090–20095. doi: 10.1074/jbc.273.32.20090. [DOI] [PubMed] [Google Scholar]
  137. Skorski T., Nieborowska-Skorska M., Szczylik C., Kanakaraj P., Perrotti D., Zon G., Gewirtz A., Perussia B., Calabretta B. C-RAF-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hematopoiesis. Cancer Res. 1995 Jun 1;55(11):2275–2278. [PubMed] [Google Scholar]
  138. Smith J. A., Poteet-Smith C. E., Malarkey K., Sturgill T. W. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem. 1999 Jan 29;274(5):2893–2898. doi: 10.1074/jbc.274.5.2893. [DOI] [PubMed] [Google Scholar]
  139. Stancato L. F., Sakatsume M., David M., Dent P., Dong F., Petricoin E. F., Krolewski J. J., Silvennoinen O., Saharinen P., Pierce J. Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway. Mol Cell Biol. 1997 Jul;17(7):3833–3840. doi: 10.1128/mcb.17.7.3833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Stancato L. F., Yu C. R., Petricoin E. F., 3rd, Larner A. C. Activation of Raf-1 by interferon gamma and oncostatin M requires expression of the Stat1 transcription factor. J Biol Chem. 1998 Jul 24;273(30):18701–18704. doi: 10.1074/jbc.273.30.18701. [DOI] [PubMed] [Google Scholar]
  141. Stewart S., Sundaram M., Zhang Y., Lee J., Han M., Guan K. L. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol. 1999 Aug;19(8):5523–5534. doi: 10.1128/mcb.19.8.5523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Su B., Jacinto E., Hibi M., Kallunki T., Karin M., Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell. 1994 Jun 3;77(5):727–736. doi: 10.1016/0092-8674(94)90056-6. [DOI] [PubMed] [Google Scholar]
  143. Sun H., King A. J., Diaz H. B., Marshall M. S. Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak. Curr Biol. 2000 Mar 9;10(5):281–284. doi: 10.1016/s0960-9822(00)00359-6. [DOI] [PubMed] [Google Scholar]
  144. Takayama S., Bimston D. N., Matsuzawa S., Freeman B. C., Aime-Sempe C., Xie Z., Morimoto R. I., Reed J. C. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 1997 Aug 15;16(16):4887–4896. doi: 10.1093/emboj/16.16.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Tanoue T., Adachi M., Moriguchi T., Nishida E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol. 2000 Feb;2(2):110–116. doi: 10.1038/35000065. [DOI] [PubMed] [Google Scholar]
  146. Therrien M., Michaud N. R., Rubin G. M., Morrison D. K. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 1996 Nov 1;10(21):2684–2695. doi: 10.1101/gad.10.21.2684. [DOI] [PubMed] [Google Scholar]
  147. Therrien M., Wong A. M., Kwan E., Rubin G. M. Functional analysis of CNK in RAS signaling. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13259–13263. doi: 10.1073/pnas.96.23.13259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Therrien M., Wong A. M., Rubin G. M. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell. 1998 Oct 30;95(3):343–353. doi: 10.1016/s0092-8674(00)81766-3. [DOI] [PubMed] [Google Scholar]
  149. Thompson P. A., Ledbetter J. A., Rapp U. R., Bolen J. B. The Raf-1 serine-threonine kinase is a substrate for the p56lck protein tyrosine kinase in human T-cells. Cell Growth Differ. 1991 Dec;2(12):609–617. [PubMed] [Google Scholar]
  150. Thorson J. A., Yu L. W., Hsu A. L., Shih N. Y., Graves P. R., Tanner J. W., Allen P. M., Piwnica-Worms H., Shaw A. S. 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol Cell Biol. 1998 Sep;18(9):5229–5238. doi: 10.1128/mcb.18.9.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Tzivion G., Luo Z., Avruch J. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature. 1998 Jul 2;394(6688):88–92. doi: 10.1038/27938. [DOI] [PubMed] [Google Scholar]
  152. Ueffing M., Lovrić J., Philipp A., Mischak H., Kolch W. Protein kinase C-epsilon associates with the Raf-1 kinase and induces the production of growth factors that stimulate Raf-1 activity. Oncogene. 1997 Dec 11;15(24):2921–2927. doi: 10.1038/sj.onc.1201477. [DOI] [PubMed] [Google Scholar]
  153. Van Der Hoeven P. C., Van Der Wal J. C., Ruurs P., Van Dijk M. C., Van Blitterswijk J. 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J. 2000 Jan 15;345(Pt 2):297–306. doi: 10.1042/0264-6021:3450297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Vincenz C., Dixit V. M. 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem. 1996 Aug 16;271(33):20029–20034. doi: 10.1074/jbc.271.33.20029. [DOI] [PubMed] [Google Scholar]
  155. Vossler M. R., Yao H., York R. D., Pan M. G., Rim C. S., Stork P. J. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell. 1997 Apr 4;89(1):73–82. doi: 10.1016/s0092-8674(00)80184-1. [DOI] [PubMed] [Google Scholar]
  156. Wang H. G., Pathan N., Ethell I. M., Krajewski S., Yamaguchi Y., Shibasaki F., McKeon F., Bobo T., Franke T. F., Reed J. C. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science. 1999 Apr 9;284(5412):339–343. doi: 10.1126/science.284.5412.339. [DOI] [PubMed] [Google Scholar]
  157. Wang H. G., Rapp U. R., Reed J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996 Nov 15;87(4):629–638. doi: 10.1016/s0092-8674(00)81383-5. [DOI] [PubMed] [Google Scholar]
  158. Wang H. G., Takayama S., Rapp U. R., Reed J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7063–7068. doi: 10.1073/pnas.93.14.7063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Wang S., Ghosh R. N., Chellappan S. P. Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol. 1998 Dec;18(12):7487–7498. doi: 10.1128/mcb.18.12.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Wartmann M., Davis R. J. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem. 1994 Mar 4;269(9):6695–6701. [PubMed] [Google Scholar]
  161. Wassarman D. A., Solomon N. M., Chang H. C., Karim F. D., Therrien M., Rubin G. M. Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila. Genes Dev. 1996 Feb 1;10(3):272–278. doi: 10.1101/gad.10.3.272. [DOI] [PubMed] [Google Scholar]
  162. Weissinger E. M., Eissner G., Grammer C., Fackler S., Haefner B., Yoon L. S., Lu K. S., Bazarov A., Sedivy J. M., Mischak H. Inhibition of the Raf-1 kinase by cyclic AMP agonists causes apoptosis of v-abl-transformed cells. Mol Cell Biol. 1997 Jun;17(6):3229–3241. doi: 10.1128/mcb.17.6.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Whitehurst C. E., Owaki H., Bruder J. T., Rapp U. R., Geppert T. D. The MEK kinase activity of the catalytic domain of RAF-1 is regulated independently of Ras binding in T cells. J Biol Chem. 1995 Mar 10;270(10):5594–5599. doi: 10.1074/jbc.270.10.5594. [DOI] [PubMed] [Google Scholar]
  164. Winkler D. G., Cutler R. E., Jr, Drugan J. K., Campbell S., Morrison D. K., Cooper J. A. Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity. J Biol Chem. 1998 Aug 21;273(34):21578–21584. doi: 10.1074/jbc.273.34.21578. [DOI] [PubMed] [Google Scholar]
  165. Winkler D. G., Cutler R. E., Jr, Drugan J. K., Campbell S., Morrison D. K., Cooper J. A. Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity. J Biol Chem. 1998 Aug 21;273(34):21578–21584. doi: 10.1074/jbc.273.34.21578. [DOI] [PubMed] [Google Scholar]
  166. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  167. Wu Y., Han M., Guan K. L. MEK-2, a Caenorhabditis elegans MAP kinase kinase, functions in Ras-mediated vulval induction and other developmental events. Genes Dev. 1995 Mar 15;9(6):742–755. doi: 10.1101/gad.9.6.742. [DOI] [PubMed] [Google Scholar]
  168. Xia K., Mukhopadhyay N. K., Inhorn R. C., Barber D. L., Rose P. E., Lee R. S., Narsimhan R. P., D'Andrea A. D., Griffin J. D., Roberts T. M. The cytokine-activated tyrosine kinase JAK2 activates Raf-1 in a p21ras-dependent manner. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11681–11686. doi: 10.1073/pnas.93.21.11681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Xing H., Kornfeld K., Muslin A. J. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol. 1997 May 1;7(5):294–300. doi: 10.1016/s0960-9822(06)00152-7. [DOI] [PubMed] [Google Scholar]
  170. Xing H., Zhang S., Weinheimer C., Kovacs A., Muslin A. J. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J. 2000 Feb 1;19(3):349–358. doi: 10.1093/emboj/19.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Yang E., Zha J., Jockel J., Boise L. H., Thompson C. B., Korsmeyer S. J. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995 Jan 27;80(2):285–291. doi: 10.1016/0092-8674(95)90411-5. [DOI] [PubMed] [Google Scholar]
  172. Yang S. H., Whitmarsh A. J., Davis R. J., Sharrocks A. D. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J. 1998 Mar 16;17(6):1740–1749. doi: 10.1093/emboj/17.6.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Yao B., Zhang Y., Delikat S., Mathias S., Basu S., Kolesnick R. Phosphorylation of Raf by ceramide-activated protein kinase. Nature. 1995 Nov 16;378(6554):307–310. doi: 10.1038/378307a0. [DOI] [PubMed] [Google Scholar]
  174. Yee W. M., Worley P. F. Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol. 1997 Feb;17(2):921–933. doi: 10.1128/mcb.17.2.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Yeung K., Janosch P., McFerran B., Rose D. W., Mischak H., Sedivy J. M., Kolch W. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol. 2000 May;20(9):3079–3085. doi: 10.1128/mcb.20.9.3079-3085.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Yeung K., Seitz T., Li S., Janosch P., McFerran B., Kaiser C., Fee F., Katsanakis K. D., Rose D. W., Mischak H. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature. 1999 Sep 9;401(6749):173–177. doi: 10.1038/43686. [DOI] [PubMed] [Google Scholar]
  177. York R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McCleskey E. W., Stork P. J. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature. 1998 Apr 9;392(6676):622–626. doi: 10.1038/33451. [DOI] [PubMed] [Google Scholar]
  178. Yu W., Fantl W. J., Harrowe G., Williams L. T. Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol. 1998 Jan 1;8(1):56–64. doi: 10.1016/s0960-9822(98)70020-x. [DOI] [PubMed] [Google Scholar]
  179. Zha J., Harada H., Yang E., Jockel J., Korsmeyer S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 1996 Nov 15;87(4):619–628. doi: 10.1016/s0092-8674(00)81382-3. [DOI] [PubMed] [Google Scholar]
  180. Zhang Y., Yao B., Delikat S., Bayoumy S., Lin X. H., Basu S., McGinley M., Chan-Hui P. Y., Lichenstein H., Kolesnick R. Kinase suppressor of Ras is ceramide-activated protein kinase. Cell. 1997 Apr 4;89(1):63–72. doi: 10.1016/s0092-8674(00)80183-x. [DOI] [PubMed] [Google Scholar]
  181. Zimmermann S., Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999 Nov 26;286(5445):1741–1744. doi: 10.1126/science.286.5445.1741. [DOI] [PubMed] [Google Scholar]
  182. de Rooij J., Zwartkruis F. J., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A., Bos J. L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998 Dec 3;396(6710):474–477. doi: 10.1038/24884. [DOI] [PubMed] [Google Scholar]
  183. van der Straten A., Rommel C., Dickson B., Hafen E. The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J. 1997 Apr 15;16(8):1961–1969. doi: 10.1093/emboj/16.8.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES