Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 1;352(Pt 2):373–380.

Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells.

O Alcazar 1, M Tiedge 1, S Lenzen 1
PMCID: PMC1221468  PMID: 11085930

Abstract

The role of lactate dehydrogenase (LDH) in the generation of the metabolic signal for insulin secretion was studied after stable overexpression in INS-1 and RINm5F insulin-producing cells. INS-1 cells with a 25-fold overexpression of LDH-A, the highest level achieved, showed a 20-30% decrease in the glucose oxidation rate at glucose concentrations above 5 mM when compared with control cells, whereas values were unchanged at lower glucose concentrations. Lactate release increased in parallel with a decrease in the glucose oxidation rate. However, the INS-1 cell glucose-induced insulin secretory response, together with the rate of glucose utilization, were not significantly affected by LDH-A overexpression. Despite 3-fold overexpression of LDH-A in glucose-unresponsive RINm5F cells, there was no change in insulin secretion, glucose metabolism or lactate production in these cells. Exogenously added pyruvate and lactate potentiated glucose-stimulated insulin secretion in INS-1 cells, an effect that was abolished after LDH-A overexpression. Both compounds significantly decreased glucose oxidation rates in control cells. After overexpression of LDH-A in INS-1 cells, the effects of pyruvate and lactate on glucose oxidation were diminished. On the other hand, after LDH-A overexpression, both glycolytic metabolites decreased the glucose utilization rate at 5 mM glucose. The present data suggest that the level of LDH expression in insulin-secreting cells is critical for correct channelling of pyruvate towards mitochondrial metabolism. Interestingly, glucokinase-mediated glycolytic flux was decreased after LDH-A overexpression. Thus preferential channelling of glucose towards aerobic metabolism by glucokinase may be determined, at least in part, by the low level of constitutive expression of LDH-A in pancreatic beta-cells. In conclusion, the level of LDH expression in insulin-secreting cells is an important determinant of the physiological insulin-secretory capacity, and also determines how pyruvate and lactate affect insulin secretion.

Full Text

The Full Text of this article is available as a PDF (147.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asfari M., Janjic D., Meda P., Li G., Halban P. A., Wollheim C. B. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology. 1992 Jan;130(1):167–178. doi: 10.1210/endo.130.1.1370150. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Kakei M. ATP-sensitive K+ channels in rat pancreatic beta-cells: modulation by ATP and Mg2+ ions. J Physiol. 1989 Sep;416:349–367. doi: 10.1113/jphysiol.1989.sp017765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashcroft S. J. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia. 1980 Jan;18(1):5–15. doi: 10.1007/BF01228295. [DOI] [PubMed] [Google Scholar]
  4. Ashcroft S. J., Hedeskov C. J., Randle P. J. Glucose metabolism in mouse pancreatic islets. Biochem J. 1970 Jun;118(1):143–154. doi: 10.1042/bj1180143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashcroft S. J., Randle P. J. Mechanisms in the control of insulin release by glucose and other substances. Adv Metab Disord. 1970;1(Suppl):51–57. doi: 10.1016/b978-0-12-027361-4.50012-0. [DOI] [PubMed] [Google Scholar]
  6. Ashcroft S. J., Weerasinghe L. C., Randle P. J. Interrelationship of islet metabolism, adenosine triphosphate content and insulin release. Biochem J. 1973 Feb;132(2):223–231. doi: 10.1042/bj1320223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Best L., Trebilcock R., Tomlinson S. Lactate transport in insulin-secreting beta-cells: contrast between rat islets and HIT-T15 insulinoma cells. Mol Cell Endocrinol. 1992 Jul;86(1-2):49–56. doi: 10.1016/0303-7207(92)90174-5. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. De Vos A., Schuit F. C., Malaisse W. J. Preferential stimulation by glucose of its oxidation relative to glycolysis in purified insulin-producing cells. Biochem Int. 1991 May;24(1):117–121. [PubMed] [Google Scholar]
  10. Frödin M., Sekine N., Roche E., Filloux C., Prentki M., Wollheim C. B., Van Obberghen E. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem. 1995 Apr 7;270(14):7882–7889. doi: 10.1074/jbc.270.14.7882. [DOI] [PubMed] [Google Scholar]
  11. Gazdar A. F., Chick W. L., Oie H. K., Sims H. L., King D. L., Weir G. C., Lauris V. Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3519–3523. doi: 10.1073/pnas.77.6.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hedeskov C. J., Hertz L., Nissen C. The effect of mannoheptulose on glucose- and pyruvate-stimulated oxygen uptake in normal mouse pancreatic islets. Biochim Biophys Acta. 1971 Feb 28;261(2):388–397. doi: 10.1016/0304-4165(72)90063-3. [DOI] [PubMed] [Google Scholar]
  13. Hedeskov C. J. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980 Apr;60(2):442–509. doi: 10.1152/physrev.1980.60.2.442. [DOI] [PubMed] [Google Scholar]
  14. Hellman B., Idahl L. A., Sehlin J., Täljedal I. B. Influence of anoxia on glucose metabolism in pancreatic islets: lack of correlation between fructose-1,6-diphosphate and apparent glycolytic flux. Diabetologia. 1975 Dec;11(6):495–500. doi: 10.1007/BF01222098. [DOI] [PubMed] [Google Scholar]
  15. Ishihara H., Wang H., Drewes L. R., Wollheim C. B. Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest. 1999 Dec;104(11):1621–1629. doi: 10.1172/JCI7515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lenzen S. Effects of alpha-ketocarboxylic acids and 4-pentenoic acid on insulin secretion from the perfused rat pancreas. Biochem Pharmacol. 1978 May 1;27(9):1321–1324. doi: 10.1016/0006-2952(78)90114-4. [DOI] [PubMed] [Google Scholar]
  17. Lenzen S. Insulin secretion by isolated perfused rat and mouse pancreas. Am J Physiol. 1979 Apr;236(4):E391–E400. doi: 10.1152/ajpendo.1979.236.4.E391. [DOI] [PubMed] [Google Scholar]
  18. Lenzen S., Panten U. 2-oxocarboxylic acids and function of pancreatic islets in obese-hyperglycaemic mice. Insulin secretion in relation to 45Ca uptake and metabolism. Biochem J. 1980 Jan 15;186(1):135–144. doi: 10.1042/bj1860135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lenzen S., Panten U. Signal recognition by pancreatic B-cells. Biochem Pharmacol. 1988 Feb 1;37(3):371–378. doi: 10.1016/0006-2952(88)90201-8. [DOI] [PubMed] [Google Scholar]
  20. Loubatières-Mariani M. M., Loubatières A., Blayac J. P. Etude comparative des effets insulino-sécréteurs du L (+) et du D (-) lactate de sodium. C R Seances Soc Biol Fil. 1976;170(4):825–827. [PubMed] [Google Scholar]
  21. MacDonald M. J. Does glyceraldehyde enter pancreatic islet metabolism via both the triokinase and the glyceraldehyde phosphate dehydrogenase reactions? A study of these enzymes in islets. Arch Biochem Biophys. 1989 Apr;270(1):15–22. doi: 10.1016/0003-9861(89)90002-7. [DOI] [PubMed] [Google Scholar]
  22. MacDonald M. J. Estimates of glycolysis, pyruvate (de)carboxylation, pentose phosphate pathway, and methyl succinate metabolism in incapacitated pancreatic islets. Arch Biochem Biophys. 1993 Sep;305(2):205–214. doi: 10.1006/abbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  23. MacDonald M. J., Fahien L. A. Insulin release in pancreatic islets by a glycolytic and a Krebs cycle intermediate: contrasting patterns of glyceraldehyde phosphate and succinate. Arch Biochem Biophys. 1990 May 15;279(1):104–108. doi: 10.1016/0003-9861(90)90468-e. [DOI] [PubMed] [Google Scholar]
  24. Malaisse W. J., Bodur H. Hexose metabolism in pancreatic islets: enzyme-to-enzyme tunnelling of hexose 6-phosphates. Int J Biochem. 1991;23(12):1471–1481. doi: 10.1016/0020-711x(91)90290-4. [DOI] [PubMed] [Google Scholar]
  25. Malaisse W. J. Glucose-sensing by the pancreatic B-cell: the mitochondrial part. Int J Biochem. 1992 May;24(5):693–701. doi: 10.1016/0020-711x(92)90002-i. [DOI] [PubMed] [Google Scholar]
  26. Malaisse W. J., Kawazu S., Herchuelz A., Hutton J. C., Somers G., Devis G., Sener A. The stimulus secretion coupling of glucose-induced insulin release. Arch Biochem Biophys. 1979 Apr 15;194(1):49–62. doi: 10.1016/0003-9861(79)90594-0. [DOI] [PubMed] [Google Scholar]
  27. Malaisse W. J., Sener A., Herchuelz A., Hutton J. C. Insulin release: the fuel hypothesis. Metabolism. 1979 Apr;28(4):373–386. doi: 10.1016/0026-0495(79)90111-2. [DOI] [PubMed] [Google Scholar]
  28. Matschinsky F. M., Ellerman J. Dissociation of the insulin releasing and the metabolic functions of hexoses in islets of Langerhans. Biochem Biophys Res Commun. 1973 Jan 23;50(2):193–199. doi: 10.1016/0006-291x(73)90826-7. [DOI] [PubMed] [Google Scholar]
  29. Meglasson M. D., Matschinsky F. M. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2(3-4):163–214. doi: 10.1002/dmr.5610020301. [DOI] [PubMed] [Google Scholar]
  30. Newgard C. B., McGarry J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995;64:689–719. doi: 10.1146/annurev.bi.64.070195.003353. [DOI] [PubMed] [Google Scholar]
  31. Panten U., Christians J., von Kriegstein E., Poser W., Hasselblatt A. Effect of carbohydrates upon fluorescence of reduced pyridine nucleotides from perifused isolated pancreatic islets. Diabetologia. 1973 Dec;9(6):477–482. doi: 10.1007/BF00461692. [DOI] [PubMed] [Google Scholar]
  32. Panten U. Effects of alpha-ketomonocarboxylic acids upon insulin secretion and metabolism of isolated pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol. 1975;291(4):405–420. doi: 10.1007/BF00501798. [DOI] [PubMed] [Google Scholar]
  33. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  34. Rago R., Mitchen J., Wilding G. DNA fluorometric assay in 96-well tissue culture plates using Hoechst 33258 after cell lysis by freezing in distilled water. Anal Biochem. 1990 Nov 15;191(1):31–34. doi: 10.1016/0003-2697(90)90382-j. [DOI] [PubMed] [Google Scholar]
  35. Sekine N., Cirulli V., Regazzi R., Brown L. J., Gine E., Tamarit-Rodriguez J., Girotti M., Marie S., MacDonald M. J., Wollheim C. B. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem. 1994 Feb 18;269(7):4895–4902. [PubMed] [Google Scholar]
  36. Sener A., Kawazu S., Hutton J. C., Boschero A. C., Devis G., Somers G., Herchuelz A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem J. 1978 Oct 15;176(1):217–232. doi: 10.1042/bj1760217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sener A., Malaisse W. J. Stimulation by D-glucose of mitochondrial oxidative events in islet cells. Biochem J. 1987 Aug 15;246(1):89–95. doi: 10.1042/bj2460089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tiedge M., Lenzen S. Effects of glucose refeeding and glibenclamide treatment on glucokinase and GLUT2 gene expression in pancreatic B-cells and liver from rats. Biochem J. 1995 May 15;308(Pt 1):139–144. doi: 10.1042/bj3080139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Welsh M., Hellerström C., Andersson A. Glucose induced inhibition of radioactive nucleotide efflux from mouse pancreatic islets is dissociated from an increase in islet oxygen uptake. Diabete Metab. 1984 Oct;10(4):230–234. [PubMed] [Google Scholar]
  40. Wollheim C. B., Biden T. J. Signal transduction in insulin secretion: comparison between fuel stimuli and receptor agonists. Ann N Y Acad Sci. 1986;488:317–333. doi: 10.1111/j.1749-6632.1986.tb46568.x. [DOI] [PubMed] [Google Scholar]
  41. Zawalich W. S., Zawalich K. C. Influence of pyruvic acid methyl ester on rat pancreatic islets. Effects on insulin secretion, phosphoinositide hydrolysis, and sensitization of the beta cell. J Biol Chem. 1997 Feb 7;272(6):3527–3531. doi: 10.1074/jbc.272.6.3527. [DOI] [PubMed] [Google Scholar]
  42. Zhao C., Rutter G. A. Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 beta-cell lines. FEBS Lett. 1998 Jul 3;430(3):213–216. doi: 10.1016/s0014-5793(98)00600-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES