Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 1;352(Pt 2):443–448.

Association of FHIT (fragile histidine triad), a candidate tumour suppressor gene, with the ubiquitin-conjugating enzyme hUBC9.

Y Shi 1, M Zou 1, N R Farid 1, M C Paterson 1
PMCID: PMC1221476  PMID: 11085938

Abstract

FHIT (fragile histidine triad), a candidate tumour suppressor gene, has recently been identified at chromosomal region 3p14.2, and deletions of the gene have been reported in many types of human cancer. However, the biological function of the Fhit protein has not been fully characterized yet. Using the yeast two-hybrid screen to search for proteins that interact with Fhit in vivo, we identified a protein that is specifically associated with Fhit. This association was confirmed in both immunoprecipitation and glutathione S-transferase pull-down assays. The sequence of the protein is identical with that of human ubiquitin-conjugating enzyme 9 (hUBC9). The last 21 amino acids at the C-terminus of hUBC9 appear to be unimportant for its biological activity, since an hUBC9 mutant harbouring a deletion of these amino acids could still restore normal growth of yeast containing a temperature-sensitive mutation in the homologue UBC9 gene. Mutational analysis indicated that hUBC9 was associated with the C-terminal portion of Fhit. Neither a single amino acid substitution at codon 96 (His-->Asn) nor triple amino acid substitutions (His-->Asn) at a histidine triad (codons 94, 96 and 98) affected the association, whereas Fhit triphosphate (diadenosine 5',5"'-P(1),P(3)-triphosphate) hydrolase activity has been reported to be eliminated by either type of mutation, suggesting that the interaction between Fhit and hUBC9 is independent of Fhit enzymic activity. Given that yeast UBC9 is involved in the degradation of S- and M-phase cyclins, Fhit may be involved in cell cycle control through its interaction with hUBC9.

Full Text

The Full Text of this article is available as a PDF (166.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes L. D., Garrison P. N., Siprashvili Z., Guranowski A., Robinson A. K., Ingram S. W., Croce C. M., Ohta M., Huebner K. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5',5"'-P1,P3-triphosphate hydrolase. Biochemistry. 1996 Sep 10;35(36):11529–11535. doi: 10.1021/bi961415t. [DOI] [PubMed] [Google Scholar]
  2. Baxi M. D., McLennan A. G., Vishwanatha J. K. Characterization of the HeLa cell DNA polymerase alpha-associated Ap4A binding protein by photoaffinity labeling. Biochemistry. 1994 Dec 6;33(48):14601–14607. doi: 10.1021/bi00252a028. [DOI] [PubMed] [Google Scholar]
  3. Bièche I., Latil A., Becette V., Lidereau R. Study of FHIT transcripts in normal and malignant breast tissue. Genes Chromosomes Cancer. 1998 Dec;23(4):292–299. [PubMed] [Google Scholar]
  4. Chakrabarti S. R., Sood R., Ganguly S., Bohlander S., Shen Z., Nucifora G. Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7467–7472. doi: 10.1073/pnas.96.13.7467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Desterro J. M., Rodriguez M. S., Hay R. T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998 Aug;2(2):233–239. doi: 10.1016/s1097-2765(00)80133-1. [DOI] [PubMed] [Google Scholar]
  6. Firestein R., Feuerstein N. Association of activating transcription factor 2 (ATF2) with the ubiquitin-conjugating enzyme hUBC9. Implication of the ubiquitin/proteasome pathway in regulation of ATF2 in T cells. J Biol Chem. 1998 Mar 6;273(10):5892–5902. doi: 10.1074/jbc.273.10.5892. [DOI] [PubMed] [Google Scholar]
  7. Hateboer G., Hijmans E. M., Nooij J. B., Schlenker S., Jentsch S., Bernards R. mUBC9, a novel adenovirus E1A-interacting protein that complements a yeast cell cycle defect. J Biol Chem. 1996 Oct 18;271(42):25906–25911. doi: 10.1074/jbc.271.42.25906. [DOI] [PubMed] [Google Scholar]
  8. Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
  9. Huang Y., Garrison P. N., Barnes L. D. Cloning of the Schizosaccharomyces pombe gene encoding diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) asymmetrical hydrolase: sequence similarity with the histidine triad (HIT) protein family. Biochem J. 1995 Dec 15;312(Pt 3):925–932. doi: 10.1042/bj3120925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huebner K., Garrison P. N., Barnes L. D., Croce C. M. The role of the FHIT/FRA3B locus in cancer. Annu Rev Genet. 1998;32:7–31. doi: 10.1146/annurev.genet.32.1.7. [DOI] [PubMed] [Google Scholar]
  11. Ji L., Fang B., Yen N., Fong K., Minna J. D., Roth J. A. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res. 1999 Jul 15;59(14):3333–3339. [PubMed] [Google Scholar]
  12. Kho C. J., Huggins G. S., Endege W. O., Hsieh C. M., Lee M. E., Haber E. Degradation of E2A proteins through a ubiquitin-conjugating enzyme, UbcE2A. J Biol Chem. 1997 Feb 7;272(6):3845–3851. doi: 10.1074/jbc.272.6.3845. [DOI] [PubMed] [Google Scholar]
  13. Kovalenko O. V., Plug A. W., Haaf T., Gonda D. K., Ashley T., Ward D. C., Radding C. M., Golub E. I. Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2958–2963. doi: 10.1073/pnas.93.7.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee G. W., Melchior F., Matunis M. J., Mahajan R., Tian Q., Anderson P. Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem. 1998 Mar 13;273(11):6503–6507. doi: 10.1074/jbc.273.11.6503. [DOI] [PubMed] [Google Scholar]
  15. Mahajan R., Delphin C., Guan T., Gerace L., Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 1997 Jan 10;88(1):97–107. doi: 10.1016/s0092-8674(00)81862-0. [DOI] [PubMed] [Google Scholar]
  16. Mahajan R., Gerace L., Melchior F. Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol. 1998 Jan 26;140(2):259–270. doi: 10.1083/jcb.140.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Negrini M., Monaco C., Vorechovsky I., Ohta M., Druck T., Baffa R., Huebner K., Croce C. M. The FHIT gene at 3p14.2 is abnormal in breast carcinomas. Cancer Res. 1996 Jul 15;56(14):3173–3179. [PubMed] [Google Scholar]
  18. Ohta M., Inoue H., Cotticelli M. G., Kastury K., Baffa R., Palazzo J., Siprashvili Z., Mori M., McCue P., Druck T. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996 Feb 23;84(4):587–597. doi: 10.1016/s0092-8674(00)81034-x. [DOI] [PubMed] [Google Scholar]
  19. Okura T., Gong L., Kamitani T., Wada T., Okura I., Wei C. F., Chang H. M., Yeh E. T. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol. 1996 Nov 15;157(10):4277–4281. [PubMed] [Google Scholar]
  20. Pace H. C., Garrison P. N., Robinson A. K., Barnes L. D., Draganescu A., Rösler A., Blackburn G. M., Siprashvili Z., Croce C. M., Huebner K. Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5484–5489. doi: 10.1073/pnas.95.10.5484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Panagopoulos I., Thelin S., Mertens F., Mitelman F., Aman P. Variable FHIT transcripts in non-neoplastic tissues. Genes Chromosomes Cancer. 1997 Aug;19(4):215–219. doi: 10.1002/(sici)1098-2264(199708)19:4<215::aid-gcc2>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  22. Poukka H., Aarnisalo P., Karvonen U., Palvimo J. J., Jänne O. A. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem. 1999 Jul 2;274(27):19441–19446. doi: 10.1074/jbc.274.27.19441. [DOI] [PubMed] [Google Scholar]
  23. Seufert W., Futcher B., Jentsch S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature. 1995 Jan 5;373(6509):78–81. doi: 10.1038/373078a0. [DOI] [PubMed] [Google Scholar]
  24. Siprashvili Z., Sozzi G., Barnes L. D., McCue P., Robinson A. K., Eryomin V., Sard L., Tagliabue E., Greco A., Fusetti L. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13771–13776. doi: 10.1073/pnas.94.25.13771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sozzi G., Alder H., Tornielli S., Corletto V., Baffa R., Veronese M. L., Negrini M., Pilotti S., Pierotti M. A., Huebner K. Aberrant FHIT transcripts in Merkel cell carcinoma. Cancer Res. 1996 Jun 1;56(11):2472–2474. [PubMed] [Google Scholar]
  26. Sozzi G., Veronese M. L., Negrini M., Baffa R., Cotticelli M. G., Inoue H., Tornielli S., Pilotti S., De Gregorio L., Pastorino U. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell. 1996 Apr 5;85(1):17–26. doi: 10.1016/s0092-8674(00)81078-8. [DOI] [PubMed] [Google Scholar]
  27. Séraphin B. The HIT protein family: a new family of proteins present in prokaryotes, yeast and mammals. DNA Seq. 1992;3(3):177–179. doi: 10.3109/10425179209034013. [DOI] [PubMed] [Google Scholar]
  28. Tanaka H., Shimada Y., Harada H., Shinoda M., Hatooka S., Imamura M., Ishizaki K. Methylation of the 5' CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res. 1998 Aug 1;58(15):3429–3434. [PubMed] [Google Scholar]
  29. Tashiro K., Pando M. P., Kanegae Y., Wamsley P. M., Inoue S., Verma I. M. Direct involvement of the ubiquitin-conjugating enzyme Ubc9/Hus5 in the degradation of IkappaBalpha. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7862–7867. doi: 10.1073/pnas.94.15.7862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Virgilio L., Shuster M., Gollin S. M., Veronese M. L., Ohta M., Huebner K., Croce C. M. FHIT gene alterations in head and neck squamous cell carcinomas. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9770–9775. doi: 10.1073/pnas.93.18.9770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang Z. Y., Qiu Q. Q., Gurrieri M., Huang J., Deuel T. F. WT1, the Wilms' tumor suppressor gene product, represses transcription through an interactive nuclear protein. Oncogene. 1995 Mar 16;10(6):1243–1247. [PubMed] [Google Scholar]
  32. Wang Z. Y., Qiu Q. Q., Seufert W., Taguchi T., Testa J. R., Whitmore S. A., Callen D. F., Welsh D., Shenk T., Deuel T. F. Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9. J Biol Chem. 1996 Oct 4;271(40):24811–24816. doi: 10.1074/jbc.271.40.24811. [DOI] [PubMed] [Google Scholar]
  33. Weinmann-Dorsch C., Hedl A., Grummt I., Albert W., Ferdinand F. J., Friis R. R., Pierron G., Moll W., Grummt F. Drastic rise of intracellular adenosine(5')tetraphospho(5')adenosine correlates with onset of DNA synthesis in eukaryotic cells. Eur J Biochem. 1984 Jan 2;138(1):179–185. doi: 10.1111/j.1432-1033.1984.tb07897.x. [DOI] [PubMed] [Google Scholar]
  34. Wright D. A., Futcher B., Ghosh P., Geha R. S. Association of human fas (CD95) with a ubiquitin-conjugating enzyme (UBC-FAP). J Biol Chem. 1996 Dec 6;271(49):31037–31043. doi: 10.1074/jbc.271.49.31037. [DOI] [PubMed] [Google Scholar]
  35. Zou M., Shi Y., Farid N. R., al-Sedairy S. T., Paterson M. C. FHIT gene abnormalities in both benign and malignant thyroid tumours. Eur J Cancer. 1999 Mar;35(3):467–472. doi: 10.1016/s0959-8049(98)00370-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES