Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2000 Dec 15;352(Pt 3):789–794.

Chloride channel activity of ClC-2 is modified by the actin cytoskeleton.

N Ahmed 1, M Ramjeesingh 1, S Wong 1, A Varga 1, E Garami 1, C E Bear 1
PMCID: PMC1221518  PMID: 11104687

Abstract

The chloride channel ClC-2 has been implicated in essential physiological functions, including cell-volume regulation and fluid secretion by specific epithelial tissues. Although ClC-2 is known to be activated by hyperpolarization and hypo-osmotic shock, the molecular basis for the regulation of this channel remains unclear. Here we show in the Xenopus oocyte expression system that the chloride-channel activity of ClC-2 is enhanced after treatment with the actin-disrupting agents cytochalasin and latrunkulin. These findings suggest that the actin cytoskeleton normally exerts an inhibitory effect on ClC-2 activity. An inhibitory domain was previously defined in the N-terminus of ClC-2, so we sought to determine whether this domain might interact directly with actin in binding assays in vitro. We found that a glutathione S-transferase fusion protein containing the inhibitory domain was capable of binding actin in overlay and co-sedimentation assays. Further, the binding of actin to this relatively basic peptide (pI 8.4) might be mediated through electrostatic interactions because binding was inhibited at high concentrations of NaCl with a half-maximal decrease in signal at 180 mM NaCl. This work suggests that electrostatic interactions between the N-terminus of ClC-2 and the actin cytoskeleton might have a role in the regulation of this channel.

Full Text

The Full Text of this article is available as a PDF (207.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann K. J., Guo A. W., Ervasti J. M. Utrophin lacks the rod domain actin binding activity of dystrophin. J Biol Chem. 1999 Dec 10;274(50):35375–35380. doi: 10.1074/jbc.274.50.35375. [DOI] [PubMed] [Google Scholar]
  2. Cantiello H. F., Stow J. L., Prat A. G., Ausiello D. A. Actin filaments regulate epithelial Na+ channel activity. Am J Physiol. 1991 Nov;261(5 Pt 1):C882–C888. doi: 10.1152/ajpcell.1991.261.5.C882. [DOI] [PubMed] [Google Scholar]
  3. Cid L. P., Montrose-Rafizadeh C., Smith D. I., Guggino W. B., Cutting G. R. Cloning of a putative human voltage-gated chloride channel (CIC-2) cDNA widely expressed in human tissues. Hum Mol Genet. 1995 Mar;4(3):407–413. doi: 10.1093/hmg/4.3.407. [DOI] [PubMed] [Google Scholar]
  4. Downey G. P., Grinstein S., Sue-A-Quan A., Czaban B., Chan C. K. Volume regulation in leukocytes: requirement for an intact cytoskeleton. J Cell Physiol. 1995 Apr;163(1):96–104. doi: 10.1002/jcp.1041630111. [DOI] [PubMed] [Google Scholar]
  5. Duan D., Ye L., Britton F., Horowitz B., Hume J. R. A novel anionic inward rectifier in native cardiac myocytes. Circ Res. 2000 Mar 3;86(4):E63–E71. [PubMed] [Google Scholar]
  6. Foskett J. K., Spring K. R. Involvement of calcium and cytoskeleton in gallbladder epithelial cell volume regulation. Am J Physiol. 1985 Jan;248(1 Pt 1):C27–C36. doi: 10.1152/ajpcell.1985.248.1.C27. [DOI] [PubMed] [Google Scholar]
  7. Gründer S., Thiemann A., Pusch M., Jentsch T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 1992 Dec 24;360(6406):759–762. doi: 10.1038/360759a0. [DOI] [PubMed] [Google Scholar]
  8. Higashi T., Richards C. S., Uyeda K. The interaction of phosphofructokinase with erythrocyte membranes. J Biol Chem. 1979 Oct 10;254(19):9542–9550. [PubMed] [Google Scholar]
  9. Jentsch T. J., Friedrich T., Schriever A., Yamada H. The CLC chloride channel family. Pflugers Arch. 1999 May;437(6):783–795. doi: 10.1007/s004240050847. [DOI] [PubMed] [Google Scholar]
  10. Jordt S. E., Jentsch T. J. Molecular dissection of gating in the ClC-2 chloride channel. EMBO J. 1997 Apr 1;16(7):1582–1592. doi: 10.1093/emboj/16.7.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kurashima K., D'Souza S., Szászi K., Ramjeesingh R., Orlowski J., Grinstein S. The apical Na(+)/H(+) exchanger isoform NHE3 is regulated by the actin cytoskeleton. J Biol Chem. 1999 Oct 15;274(42):29843–29849. doi: 10.1074/jbc.274.42.29843. [DOI] [PubMed] [Google Scholar]
  12. Levitan I., Almonte C., Mollard P., Garber S. S. Modulation of a volume-regulated chloride current by F-actin. J Membr Biol. 1995 Oct;147(3):283–294. doi: 10.1007/BF00234526. [DOI] [PubMed] [Google Scholar]
  13. Malinowska D. H., Kupert E. Y., Bahinski A., Sherry A. M., Cuppoletti J. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel. Am J Physiol. 1995 Jan;268(1 Pt 1):C191–C200. doi: 10.1152/ajpcell.1995.268.1.C191. [DOI] [PubMed] [Google Scholar]
  14. Matthews J. B., Smith J. A., Hrnjez B. J. Effects of F-actin stabilization or disassembly on epithelial Cl- secretion and Na-K-2Cl cotransport. Am J Physiol. 1997 Jan;272(1 Pt 1):C254–C262. doi: 10.1152/ajpcell.1997.272.1.C254. [DOI] [PubMed] [Google Scholar]
  15. Murthy S. N., Liu T., Kaul R. K., Köhler H., Steck T. L. The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3. J Biol Chem. 1981 Nov 10;256(21):11203–11208. [PubMed] [Google Scholar]
  16. Park K., Arreola J., Begenisich T., Melvin J. E. Comparison of voltage-activated Cl- channels in rat parotid acinar cells with ClC-2 in a mammalian expression system. J Membr Biol. 1998 May 15;163(2):87–95. doi: 10.1007/s002329900373. [DOI] [PubMed] [Google Scholar]
  17. Pasyk E. A., Morin X. K., Zeman P., Garami E., Galley K., Huan L. J., Wang Y., Bear C. E. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. J Biol Chem. 1998 Nov 27;273(48):31759–31764. doi: 10.1074/jbc.273.48.31759. [DOI] [PubMed] [Google Scholar]
  18. Pusch M., Jordt S. E., Stein V., Jentsch T. J. Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515(Pt 2):341–353. doi: 10.1111/j.1469-7793.1999.341ac.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwiebert E. M., Cid-Soto L. P., Stafford D., Carter M., Blaisdell C. J., Zeitlin P. L., Guggino W. B., Cutting G. R. Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3879–3884. doi: 10.1073/pnas.95.7.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwiebert E. M., Mills J. W., Stanton B. A. Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem. 1994 Mar 11;269(10):7081–7089. [PubMed] [Google Scholar]
  21. Spector I., Shochet N. R., Blasberger D., Kashman Y. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton. 1989;13(3):127–144. doi: 10.1002/cm.970130302. [DOI] [PubMed] [Google Scholar]
  22. Staley K., Smith R., Schaack J., Wilcox C., Jentsch T. J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron. 1996 Sep;17(3):543–551. doi: 10.1016/s0896-6273(00)80186-5. [DOI] [PubMed] [Google Scholar]
  23. Thiemann A., Gründer S., Pusch M., Jentsch T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992 Mar 5;356(6364):57–60. doi: 10.1038/356057a0. [DOI] [PubMed] [Google Scholar]
  24. Tilly B. C., Edixhoven M. J., Tertoolen L. G., Morii N., Saitoh Y., Narumiya S., de Jonge H. R. Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol Biol Cell. 1996 Sep;7(9):1419–1427. doi: 10.1091/mbc.7.9.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vince J. W., Reithmeier R. A. Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger. J Biol Chem. 1998 Oct 23;273(43):28430–28437. doi: 10.1074/jbc.273.43.28430. [DOI] [PubMed] [Google Scholar]
  26. Yu J., Steck T. L. Isolation and characterization of band 3, the predominant polypeptide of the human erythrocyte membrane. J Biol Chem. 1975 Dec 10;250(23):9170–9175. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES