Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 15;354(Pt 3):613–625. doi: 10.1042/0264-6021:3540613

Effect of human acetylcholinesterase subunit assembly on its circulatory residence.

T Chitlaru 1, C Kronman 1, B Velan 1, A Shafferman 1
PMCID: PMC1221693  PMID: 11237866

Abstract

Sialylated recombinant human acetylcholinesterase (rHuAChE), produced by stably transfected cells, is composed of a mixed population of monomers, dimers and tetramers and manifests a time-dependent circulatory enrichment of the higher-order oligomeric forms. To investigate this phenomenon further, homogeneous preparations of rHuAChE differing in their oligomerization statuses were generated: (1) monomers, represented by the oligomerization-impaired C580A-rHuAChE mutant, (2) wild-type (WT) dimers and (3) tetramers of WT-rHuAChE generated in vitro by complexation with a synthetic ColQ-derived proline-rich attachment domain ('PRAD') peptide. Three different series of each of these three oligoform preparations were produced: (1) partly sialylated, derived from HEK-293 cells; (2) fully sialylated, derived from engineered HEK-293 cells expressing high levels of sialyltransferase; and (3) desialylated, after treatment with sialidase to remove sialic acid termini quantitatively. The oligosaccharides associated with each of the various preparations were extensively analysed by matrix-assisted laser desorption ionization-time-of-flight MS. With the enzyme preparations comprising the fully sialylated series, a clear linear relationship between oligomerization and circulatory mean residence time (MRT) was observed. Thus monomers, dimers and tetramers exhibited MRTs of 110, 195 and 740 min respectively. As the level of sialylation decreased, this differential behaviour became less pronounced; eventually, after desialylation all oligoforms had the same MRT (5 min). These observations suggest that multiple removal systems contribute to the elimination of AChE from the circulation. Here we also demonstrate that by the combined modulation of sialylation and tetramerization it is possible to generate a rHuAChE displaying a circulatory residence exceeding that of all other known forms of native or recombinant human AChE.

Full Text

The Full Text of this article is available as a PDF (413.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altamirano C. V., Lockridge O. Conserved aromatic residues of the C-terminus of human butyrylcholinesterase mediate the association of tetramers. Biochemistry. 1999 Oct 5;38(40):13414–13422. doi: 10.1021/bi991475+. [DOI] [PubMed] [Google Scholar]
  2. Anumula K. R., Dhume S. T. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology. 1998 Jul;8(7):685–694. doi: 10.1093/glycob/8.7.685. [DOI] [PubMed] [Google Scholar]
  3. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  4. Atack J. R., Perry E. K., Bonham J. R., Perry R. H. Molecular forms of acetylcholinesterase and butyrylcholinesterase in human plasma and cerebrospinal fluid. J Neurochem. 1987 Jun;48(6):1845–1850. doi: 10.1111/j.1471-4159.1987.tb05746.x. [DOI] [PubMed] [Google Scholar]
  5. Berryman D. E., Bensadoun A. Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells. J Biol Chem. 1995 Oct 13;270(41):24525–24531. doi: 10.1074/jbc.270.41.24525. [DOI] [PubMed] [Google Scholar]
  6. Bigge J. C., Patel T. P., Bruce J. A., Goulding P. N., Charles S. M., Parekh R. B. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995 Sep 20;230(2):229–238. doi: 10.1006/abio.1995.1468. [DOI] [PubMed] [Google Scholar]
  7. Blong R. M., Bedows E., Lockridge O. Tetramerization domain of human butyrylcholinesterase is at the C-terminus. Biochem J. 1997 Nov 1;327(Pt 3):747–757. doi: 10.1042/bj3270747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bon S., Coussen F., Massoulié J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3016–3021. doi: 10.1074/jbc.272.5.3016. [DOI] [PubMed] [Google Scholar]
  9. Bon S., Massoulié J. Quaternary associations of acetylcholinesterase. I. Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3007–3015. doi: 10.1074/jbc.272.5.3007. [DOI] [PubMed] [Google Scholar]
  10. Bourne Y., Grassi J., Bougis P. E., Marchot P. Conformational flexibility of the acetylcholinesterase tetramer suggested by x-ray crystallography. J Biol Chem. 1999 Oct 22;274(43):30370–30376. doi: 10.1074/jbc.274.43.30370. [DOI] [PubMed] [Google Scholar]
  11. Chitlaru T., Kronman C., Zeevi M., Kam M., Harel A., Ordentlich A., Velan B., Shafferman A. Modulation of circulatory residence of recombinant acetylcholinesterase through biochemical or genetic manipulation of sialylation levels. Biochem J. 1998 Dec 15;336(Pt 3):647–658. doi: 10.1042/bj3360647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Collen D., Lijnen H. R., Vanlinthout I., Kieckens L., Nelles L., Stassen J. M. Thrombolytic and pharmacokinetic properties of human tissue-type plasminogen activator variants, obtained by deletion and/or duplication of structural/functional domains, in a hamster pulmonary embolism model. Thromb Haemost. 1991 Feb 12;65(2):174–180. [PubMed] [Google Scholar]
  13. Drickamer K. Clearing up glycoprotein hormones. Cell. 1991 Dec 20;67(6):1029–1032. doi: 10.1016/0092-8674(91)90278-7. [DOI] [PubMed] [Google Scholar]
  14. Duval N., Krejci E., Grassi J., Coussen F., Massoulié J., Bon S. Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid-tailed tetramer. EMBO J. 1992 Sep;11(9):3255–3261. doi: 10.1002/j.1460-2075.1992.tb05403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  16. Feng G., Krejci E., Molgo J., Cunningham J. M., Massoulié J., Sanes J. R. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. J Cell Biol. 1999 Mar 22;144(6):1349–1360. doi: 10.1083/jcb.144.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fischer M., Ittah A., Liefer I., Gorecki M. Expression and reconstitution of biologically active human acetylcholinesterase from Escherichia coli. Cell Mol Neurobiol. 1993 Feb;13(1):25–38. doi: 10.1007/BF00712987. [DOI] [PubMed] [Google Scholar]
  18. FitzGerald D. J., Fryling C. M., Zdanovsky A., Saelinger C. B., Kounnas M., Winkles J. A., Strickland D., Leppla S. Pseudomonas exotoxin-mediated selection yields cells with altered expression of low-density lipoprotein receptor-related protein. J Cell Biol. 1995 Jun;129(6):1533–1541. doi: 10.1083/jcb.129.6.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horn I. R., Moestrup S. K., van den Berg B. M., Pannekoek H., Nielsen M. S., van Zonneveld A. J. Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library. J Biol Chem. 1995 May 19;270(20):11770–11775. doi: 10.1074/jbc.270.20.11770. [DOI] [PubMed] [Google Scholar]
  20. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Knauf M. J., Bell D. P., Hirtzer P., Luo Z. P., Young J. D., Katre N. V. Relationship of effective molecular size to systemic clearance in rats of recombinant interleukin-2 chemically modified with water-soluble polymers. J Biol Chem. 1988 Oct 15;263(29):15064–15070. [PubMed] [Google Scholar]
  22. Krejci E., Thomine S., Boschetti N., Legay C., Sketelj J., Massoulié J. The mammalian gene of acetylcholinesterase-associated collagen. J Biol Chem. 1997 Sep 5;272(36):22840–22847. doi: 10.1074/jbc.272.36.22840. [DOI] [PubMed] [Google Scholar]
  23. Kronman C., Chitlaru T., Elhanany E., Velan B., Shafferman A. Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem. 2000 Sep 22;275(38):29488–29502. doi: 10.1074/jbc.M004298200. [DOI] [PubMed] [Google Scholar]
  24. Kronman C., Velan B., Gozes Y., Leitner M., Flashner Y., Lazar A., Marcus D., Sery T., Papier Y., Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene. 1992 Nov 16;121(2):295–304. doi: 10.1016/0378-1119(92)90134-b. [DOI] [PubMed] [Google Scholar]
  25. Kronman C., Velan B., Marcus D., Ordentlich A., Reuveny S., Shafferman A. Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem J. 1995 Nov 1;311(Pt 3):959–967. doi: 10.1042/bj3110959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kryger G., Harel M., Giles K., Toker L., Velan B., Lazar A., Kronman C., Barak D., Ariel N., Shafferman A. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1385–1394. doi: 10.1107/s0907444900010659. [DOI] [PubMed] [Google Scholar]
  27. Küster B., Wheeler S. F., Hunter A. P., Dwek R. A., Harvey D. J. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem. 1997 Jul 15;250(1):82–101. doi: 10.1006/abio.1997.2199. [DOI] [PubMed] [Google Scholar]
  28. Laub P. B., Gallo J. M. NCOMP--a windows-based computer program for noncompartmental analysis of pharmacokinetic data. J Pharm Sci. 1996 Apr;85(4):393–395. doi: 10.1021/js9503744. [DOI] [PubMed] [Google Scholar]
  29. Lazar A., Reuveny S., Kronman C., Velan B., Shafferman A. Evaluation of anchorage-dependent cell propagation systems for production of human acetylcholinesterase by recombinant 293 cells. Cytotechnology. 1993;13(2):115–123. doi: 10.1007/BF00749938. [DOI] [PubMed] [Google Scholar]
  30. Lockridge O., Eckerson H. W., La Du B. N. Interchain disulfide bonds and subunit organization in human serum cholinesterase. J Biol Chem. 1979 Sep 10;254(17):8324–8330. [PubMed] [Google Scholar]
  31. Mendelson I., Kronman C., Ariel N., Shafferman A., Velan B. Bovine acetylcholinesterase: cloning, expression and characterization. Biochem J. 1998 Aug 15;334(Pt 1):251–259. doi: 10.1042/bj3340251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ohno K., Brengman J., Tsujino A., Engel A. G. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9654–9659. doi: 10.1073/pnas.95.16.9654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okafo G., Burrow L., Carr S. A., Roberts G. D., Johnson W., Camilleri P. A coordinated high-performance liquid chromatographic, capillary electrophoretic, and mass spectrometric approach for the analysis of oligosaccharide mixtures derivatized with 2-aminoacridone. Anal Chem. 1996 Dec 15;68(24):4424–4430. doi: 10.1021/ac960721+. [DOI] [PubMed] [Google Scholar]
  34. Ralston J. S., Rush R. S., Doctor B. P., Wolfe A. D. Acetylcholinesterase from fetal bovine serum. Purification and characterization of soluble G4 enzyme. J Biol Chem. 1985 Apr 10;260(7):4312–4318. [PubMed] [Google Scholar]
  35. Raveh L., Grunwald J., Marcus D., Papier Y., Cohen E., Ashani Y. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. Biochem Pharmacol. 1993 Jun 22;45(12):2465–2474. doi: 10.1016/0006-2952(93)90228-o. [DOI] [PubMed] [Google Scholar]
  36. Saxena A., Ashani Y., Raveh L., Stevenson D., Patel T., Doctor B. P. Role of oligosaccharides in the pharmacokinetics of tissue-derived and genetically engineered cholinesterases. Mol Pharmacol. 1998 Jan;53(1):112–122. doi: 10.1124/mol.53.1.112. [DOI] [PubMed] [Google Scholar]
  37. Saxena A., Raveh L., Ashani Y., Doctor B. P. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. Biochemistry. 1997 Jun 17;36(24):7481–7489. doi: 10.1021/bi963156d. [DOI] [PubMed] [Google Scholar]
  38. Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem. 1992 Sep 5;267(25):17640–17648. [PubMed] [Google Scholar]
  39. Simon S., Krejci E., Massoulié J. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J. 1998 Nov 2;17(21):6178–6187. doi: 10.1093/emboj/17.21.6178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Soreq H., Ben-Aziz R., Prody C. A., Seidman S., Gnatt A., Neville L., Lieman-Hurwitz J., Lev-Lehman E., Ginzberg D., Lipidot-Lifson Y. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9688–9692. doi: 10.1073/pnas.87.24.9688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stieger S., Bütikofer P., Wiesmann U. N., Brodbeck U. Acetylcholinesterase in mouse neuroblastoma NB2A cells: analysis of production, secretion, and molecular forms. J Neurochem. 1989 Apr;52(4):1188–1196. doi: 10.1111/j.1471-4159.1989.tb01865.x. [DOI] [PubMed] [Google Scholar]
  42. Taylor P. B., Rieger F., Shelanski M. L., Greene L. A. Cellular localization of the multiple molecular forms of acetylcholinesterase in cultured neuronal cells. J Biol Chem. 1981 Apr 25;256(8):3827–3830. [PubMed] [Google Scholar]
  43. Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S., Shafferman A. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. J Biol Chem. 1991 Dec 15;266(35):23977–23984. [PubMed] [Google Scholar]
  44. Warshawsky I., Bu G., Schwartz A. L. 39-kD protein inhibits tissue-type plasminogen activator clearance in vivo. J Clin Invest. 1993 Aug;92(2):937–944. doi: 10.1172/JCI116669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weinstein J., de Souza-e-Silva U., Paulson J. C. Sialylation of glycoprotein oligosaccharides N-linked to asparagine. Enzymatic characterization of a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase and a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase from rat liver. J Biol Chem. 1982 Nov 25;257(22):13845–13853. [PubMed] [Google Scholar]
  46. Weiss P., Ashwell G. The asialoglycoprotein receptor: properties and modulation by ligand. Prog Clin Biol Res. 1989;300:169–184. [PubMed] [Google Scholar]
  47. Wolfe A. D., Rush R. S., Doctor B. P., Koplovitz I., Jones D. Acetylcholinesterase prophylaxis against organophosphate toxicity. Fundam Appl Toxicol. 1987 Aug;9(2):266–270. doi: 10.1016/0272-0590(87)90048-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES