Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Mar 15;354(Pt 3):697–706. doi: 10.1042/0264-6021:3540697

Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase.

J Roelofs 1, H Snippe 1, R G Kleineidam 1, P J Van Haastert 1
PMCID: PMC1221702  PMID: 11237875

Abstract

The core of adenylate and guanylate cyclases is formed by an intramolecular or intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a heterodimer and are activated by G-proteins. In contrast, membrane-bound guanylate cyclases have only one transmembrane spanning region and one cyclase domain, and are activated by extracellular ligands to form a homodimer. In the cellular slime mould, Dictyostelium discoideum, membrane-bound guanylate cyclase activity is induced after cAMP stimulation; a G-protein-coupled cAMP receptor and G-proteins are essential for this activation. We have cloned a Dictyostelium gene, DdGCA, encoding a protein with 12 transmembrane spanning regions and two cyclase domains. Sequence alignment demonstrates that the two cyclase domains are transposed, relative to these domains in adenylate cyclases. DdGCA expressed in Dictyostelium exhibits high guanylate cyclase activity and no detectable adenylate cyclase activity. Deletion of the gene indicates that DdGCA is not essential for chemotaxis or osmo-regulation. The knock-out strain still exhibits substantial guanylate cyclase activity, demonstrating that Dictyostelium contains at least one other guanylate cyclase.

Full Text

The Full Text of this article is available as a PDF (394.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buck J., Sinclair M. L., Schapal L., Cann M. J., Levin L. R. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):79–84. doi: 10.1073/pnas.96.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carucci D. J., Witney A. A., Muhia D. K., Warhurst D. C., Schaap P., Meima M., Li J. L., Taylor M. C., Kelly J. M., Baker D. A. Guanylyl cyclase activity associated with putative bifunctional integral membrane proteins in Plasmodium falciparum. J Biol Chem. 2000 Jul 21;275(29):22147–22156. doi: 10.1074/jbc.M001021200. [DOI] [PubMed] [Google Scholar]
  3. Chen M. Y., Long Y., Devreotes P. N. A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium. Genes Dev. 1997 Dec 1;11(23):3218–3231. doi: 10.1101/gad.11.23.3218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darcy P. K., Wilczynska Z., Fisher P. R. The role of cGMP in photosensory and thermosensory transduction in Dictyostelium discoideum. Microbiology. 1994 Jul;140(Pt 7):1619–1632. doi: 10.1099/13500872-140-7-1619. [DOI] [PubMed] [Google Scholar]
  5. Dembinsky A., Rubin H., Ravid S. Chemoattractant-mediated increases in cGMP induce changes in Dictyostelium myosin II heavy chain-specific protein kinase C activities. J Cell Biol. 1996 Aug;134(4):911–921. doi: 10.1083/jcb.134.4.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dessauer C. W., Gilman A. G. Purification and characterization of a soluble form of mammalian adenylyl cyclase. J Biol Chem. 1996 Jul 12;271(28):16967–16974. doi: 10.1074/jbc.271.28.16967. [DOI] [PubMed] [Google Scholar]
  7. Dizhoor A. M., Olshevskaya E. V., Henzel W. J., Wong S. C., Stults J. T., Ankoudinova I., Hurley J. B. Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem. 1995 Oct 20;270(42):25200–25206. doi: 10.1074/jbc.270.42.25200. [DOI] [PubMed] [Google Scholar]
  8. Drayer A. L., Van der Kaay J., Mayr G. W., Van Haastert P. J. Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J. 1994 Apr 1;13(7):1601–1609. doi: 10.1002/j.1460-2075.1994.tb06423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friebe A., Russwurm M., Mergia E., Koesling D. A point-mutated guanylyl cyclase with features of the YC-1-stimulated enzyme: implications for the YC-1 binding site? Biochemistry. 1999 Nov 16;38(46):15253–15257. doi: 10.1021/bi9908944. [DOI] [PubMed] [Google Scholar]
  10. Heikoop J. C., Grootenhuis P. D., Blaauw M., Veldema J. S., Van Haastert P. J., Linskens M. H. Expression of a bioactive, single-chain choriogonadotropin in Dictyostelium discoideum. Eur J Biochem. 1998 Sep 1;256(2):359–363. doi: 10.1046/j.1432-1327.1998.2560359.x. [DOI] [PubMed] [Google Scholar]
  11. Insall R. H., Borleis J., Devreotes P. N. The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr Biol. 1996 Jun 1;6(6):719–729. doi: 10.1016/s0960-9822(09)00453-9. [DOI] [PubMed] [Google Scholar]
  12. Insall R. H., Soede R. D., Schaap P., Devreotes P. N. Two cAMP receptors activate common signaling pathways in Dictyostelium. Mol Biol Cell. 1994 Jun;5(6):703–711. doi: 10.1091/mbc.5.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Insall R., Kuspa A., Lilly P. J., Shaulsky G., Levin L. R., Loomis W. F., Devreotes P. CRAC, a cytosolic protein containing a pleckstrin homology domain, is required for receptor and G protein-mediated activation of adenylyl cyclase in Dictyostelium. J Cell Biol. 1994 Sep;126(6):1537–1545. doi: 10.1083/jcb.126.6.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Janssens P. M., De Jong C. C., Vink A. A., Van Haastert P. J. Regulatory properties of magnesium-dependent guanylate cyclase in Dictyostelium discoideum membranes. J Biol Chem. 1989 Mar 15;264(8):4329–4335. [PubMed] [Google Scholar]
  15. Koch K. W. Purification and identification of photoreceptor guanylate cyclase. J Biol Chem. 1991 May 5;266(13):8634–8637. [PubMed] [Google Scholar]
  16. Konijn T. M. Microbiological assay of cyclic 3',5'-AMP. Experientia. 1970 Apr 15;26(4):367–369. doi: 10.1007/BF01896891. [DOI] [PubMed] [Google Scholar]
  17. Kumagai A., Hadwiger J. A., Pupillo M., Firtel R. A. Molecular genetic analysis of two G alpha protein subunits in Dictyostelium. J Biol Chem. 1991 Jan 15;266(2):1220–1228. [PubMed] [Google Scholar]
  18. Kuwayama H., Ecke M., Gerisch G., Van Haastert P. J. Protection against osmotic stress by cGMP-mediated myosin phosphorylation. Science. 1996 Jan 12;271(5246):207–209. doi: 10.1126/science.271.5246.207. [DOI] [PubMed] [Google Scholar]
  19. Kuwayama H., Ishida S., Van Haastert P. J. Non-chemotactic Dictyostelium discoideum mutants with altered cGMP signal transduction. J Cell Biol. 1993 Dec;123(6 Pt 1):1453–1462. doi: 10.1083/jcb.123.6.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuwayama H., Van Haastert P. J. Chemotactic and osmotic signals share a cGMP transduction pathway in Dictyostelium discoideum. FEBS Lett. 1998 Mar 13;424(3):248–252. doi: 10.1016/s0014-5793(98)00183-5. [DOI] [PubMed] [Google Scholar]
  21. Linder J. U., Engel P., Reimer A., Krüger T., Plattner H., Schultz A., Schultz J. E. Guanylyl cyclases with the topology of mammalian adenylyl cyclases and an N-terminal P-type ATPase-like domain in Paramecium, Tetrahymena and Plasmodium. EMBO J. 1999 Aug 2;18(15):4222–4232. doi: 10.1093/emboj/18.15.4222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu G., Kuwayama H., Ishida S., Newell P. C. The role of cyclic GMP in regulating myosin during chemotaxis of Dictyostelium: evidence from a mutant lacking the normal cyclic GMP response to cyclic AMP. J Cell Sci. 1993 Oct;106(Pt 2):591–595. doi: 10.1242/jcs.106.2.591. [DOI] [PubMed] [Google Scholar]
  23. Liu G., Newell P. C. Evidence of cyclic GMP may regulate the association of myosin II heavy chain with the cytoskeleton by inhibiting its phosphorylation. J Cell Sci. 1991 Apr;98(Pt 4):483–490. doi: 10.1242/jcs.98.4.483. [DOI] [PubMed] [Google Scholar]
  24. Liu G., Newell P. C. Regulation of myosin regulatory light chain phosphorylation via cyclic GMP during chemotaxis of Dictyostelium. J Cell Sci. 1994 Jul;107(Pt 7):1737–1743. doi: 10.1242/jcs.107.7.1737. [DOI] [PubMed] [Google Scholar]
  25. Liu G., Newell P. C. Role of cyclic GMP in signal transduction to cytoskeletal myosin. Symp Soc Exp Biol. 1993;47:283–295. [PubMed] [Google Scholar]
  26. Liu Y., Ruoho A. E., Rao V. D., Hurley J. H. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13414–13419. doi: 10.1073/pnas.94.25.13414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nellen W., Datta S., Reymond C., Sivertsen A., Mann S., Crowley T., Firtel R. A. Molecular biology in Dictyostelium: tools and applications. Methods Cell Biol. 1987;28:67–100. doi: 10.1016/s0091-679x(08)61637-4. [DOI] [PubMed] [Google Scholar]
  28. Newell P. C., Liu G. Streamer F mutants and chemotaxis of Dictyostelium. Bioessays. 1992 Jul;14(7):473–479. doi: 10.1002/bies.950140708. [DOI] [PubMed] [Google Scholar]
  29. Oyama M., Kubota K., Okamoto K. Regulation of guanylate cyclase by a guanine nucleotide binding protein, G alpha 2, in Dictyostelium discoideum. Biochem Biophys Res Commun. 1991 May 15;176(3):1245–1249. doi: 10.1016/0006-291x(91)90419-8. [DOI] [PubMed] [Google Scholar]
  30. Oyama M. cGMP accumulation induced by hypertonic stress in Dictyostelium discoideum. J Biol Chem. 1996 Mar 8;271(10):5574–5579. [PubMed] [Google Scholar]
  31. Pitt G. S., Milona N., Borleis J., Lin K. C., Reed R. R., Devreotes P. N. Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development. Cell. 1992 Apr 17;69(2):305–315. doi: 10.1016/0092-8674(92)90411-5. [DOI] [PubMed] [Google Scholar]
  32. Root P. A., Prince A., Gundersen R. E. Aggregation of Dictyostelium discoideum is dependent on myristoylation and membrane localization of the G protein alpha-subunit, G alpha 2. J Cell Biochem. 1999 Aug 1;74(2):301–311. [PubMed] [Google Scholar]
  33. Schulkes C. C., Schoen C. D., Arents J. C., Van Driel R. A soluble factor and GTP gamma S are required for Dictyostelium discoideum guanylate cyclase activity. Biochim Biophys Acta. 1992 Apr 30;1135(1):73–78. doi: 10.1016/0167-4889(92)90168-b. [DOI] [PubMed] [Google Scholar]
  34. Segall J. E., Kuspa A., Shaulsky G., Ecke M., Maeda M., Gaskins C., Firtel R. A., Loomis W. F. A MAP kinase necessary for receptor-mediated activation of adenylyl cyclase in Dictyostelium. J Cell Biol. 1995 Feb;128(3):405–413. doi: 10.1083/jcb.128.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Silveira L. A., Smith J. L., Tan J. L., Spudich J. A. MLCK-A, an unconventional myosin light chain kinase from Dictyostelium, is activated by a cGMP-dependent pathway. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13000–13005. doi: 10.1073/pnas.95.22.13000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Snaar-Jagalska B. E., Van Haastert P. J. G-protein assays in Dictyostelium. Methods Enzymol. 1994;237:387–408. doi: 10.1016/s0076-6879(94)37077-x. [DOI] [PubMed] [Google Scholar]
  37. Strimmer K., von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6815–6819. doi: 10.1073/pnas.94.13.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sunahara R. K., Beuve A., Tesmer J. J., Sprang S. R., Garbers D. L., Gilman A. G. Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem. 1998 Jun 26;273(26):16332–16338. doi: 10.1074/jbc.273.26.16332. [DOI] [PubMed] [Google Scholar]
  39. Söderbom F., Anjard C., Iranfar N., Fuller D., Loomis W. F. An adenylyl cyclase that functions during late development of Dictyostelium. Development. 1999 Dec;126(23):5463–5471. doi: 10.1242/dev.126.23.5463. [DOI] [PubMed] [Google Scholar]
  40. Tang W. J., Gilman A. G. Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. Science. 1995 Jun 23;268(5218):1769–1772. doi: 10.1126/science.7792604. [DOI] [PubMed] [Google Scholar]
  41. Tang W. J., Stanzel M., Gilman A. G. Truncation and alanine-scanning mutants of type I adenylyl cyclase. Biochemistry. 1995 Nov 7;34(44):14563–14572. doi: 10.1021/bi00044a035. [DOI] [PubMed] [Google Scholar]
  42. Tesmer J. J., Sunahara R. K., Gilman A. G., Sprang S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997 Dec 12;278(5345):1907–1916. doi: 10.1126/science.278.5345.1907. [DOI] [PubMed] [Google Scholar]
  43. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tucker C. L., Hurley J. H., Miller T. R., Hurley J. B. Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5993–5997. doi: 10.1073/pnas.95.11.5993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Whisnant R. E., Gilman A. G., Dessauer C. W. Interaction of the two cytosolic domains of mammalian adenylyl cyclase. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6621–6625. doi: 10.1073/pnas.93.13.6621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wong S. K., Ma C. P., Foster D. C., Chen A. Y., Garbers D. L. The guanylyl cyclase-A receptor transduces an atrial natriuretic peptide/ATP activation signal in the absence of other proteins. J Biol Chem. 1995 Dec 22;270(51):30818–30822. doi: 10.1074/jbc.270.51.30818. [DOI] [PubMed] [Google Scholar]
  47. Wu L., Valkema R., Van Haastert P. J., Devreotes P. N. The G protein beta subunit is essential for multiple responses to chemoattractants in Dictyostelium. J Cell Biol. 1995 Jun;129(6):1667–1675. doi: 10.1083/jcb.129.6.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yan S. Z., Hahn D., Huang Z. H., Tang W. J. Two cytoplasmic domains of mammalian adenylyl cyclase form a Gs alpha- and forskolin-activated enzyme in vitro. J Biol Chem. 1996 May 3;271(18):10941–10945. doi: 10.1074/jbc.271.18.10941. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES