Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):347–356. doi: 10.1042/0264-6021:3550347

Phosphorylation of murine double minute clone 2 (MDM2) protein at serine-267 by protein kinase CK2 in vitro and in cultured cells.

M Hjerrild 1, D Milne 1, N Dumaz 1, T Hay 1, O G Issinger 1, D Meek 1
PMCID: PMC1221745  PMID: 11284721

Abstract

Murine double minute clone 2 oncoprotein (MDM2) is a key component in the regulation of the tumour suppressor p53. MDM2 mediates the ubiqutination of p53 in the capacity of an E3 ligase and targets p53 for rapid degradation by the proteasome. Stress signals which impinge on p53, leading to its activation, promote disruption of the p53-MDM2 complex, as in the case of ionizing radiation, or block MDM2 synthesis and thereby reduce cellular MDM2 levels, as in the case of UV radiation. It is therefore likely that MDM2, which is known to be modified by ubiquitination, SUMOylation and multi-site phosphorylation, may itself be a target for stress signalling (SUMO is small ubiquitin-related modifier-1). In the present study we show that, like p53, the MDM2 protein is a substrate for phosphorylation by the protein kinase CK2 (CK2) in vitro. CK2 phosphorylates a single major site, Ser(267), which lies within the central acidic domain of MDM2. Fractionation of cellular extracts revealed the presence of a single Ser(267) protein kinase which co-purified with CK2 on ion-exchange chromatography and, like CK2, was subject to inhibition by micromolar concentrations of the CK2-specific inhibitor 5,6-dichlororibofuranosylbenzimidazole. Radiolabelling of cells expressing tagged recombinant wild-type MDM2 or a S267A (Ser(267)-->Ala) mutant, followed by phosphopeptide analysis, confirmed that Ser(267) is a cellular target for phosphorylation. Ser(267) mutants are still able to direct the degradation of p53, but in a slightly reduced capacity. These data highlight a potential route by which one of several physiological modifications occurring within the central acidic domain of the MDM2 protein can occur.

Full Text

The Full Text of this article is available as a PDF (291.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft M., Kubbutat M. H., Vousden K. H. Regulation of p53 function and stability by phosphorylation. Mol Cell Biol. 1999 Mar;19(3):1751–1758. doi: 10.1128/mcb.19.3.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft M., Vousden K. H. Regulation of p53 stability. Oncogene. 1999 Dec 13;18(53):7637–7643. doi: 10.1038/sj.onc.1203012. [DOI] [PubMed] [Google Scholar]
  3. Blattner C., Sparks A., Lane D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol. 1999 May;19(5):3704–3713. doi: 10.1128/mcb.19.5.3704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blattner C., Tobiasch E., Litfen M., Rahmsdorf H. J., Herrlich P. DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene. 1999 Mar 4;18(9):1723–1732. doi: 10.1038/sj.onc.1202480. [DOI] [PubMed] [Google Scholar]
  5. Blaydes J. P., Hupp T. R. DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene. 1998 Aug 27;17(8):1045–1052. doi: 10.1038/sj.onc.1202014. [DOI] [PubMed] [Google Scholar]
  6. Boldyreff B., Meggio F., Pinna L. A., Issinger O. G. Protein kinase CK2 structure-function relationship: effects of the beta subunit on reconstitution and activity. Cell Mol Biol Res. 1994;40(5-6):391–399. [PubMed] [Google Scholar]
  7. Bond J. A., Webley K., Wyllie F. S., Jones C. J., Craig A., Hupp T., Wynford-Thomas D. p53-Dependent growth arrest and altered p53-immunoreactivity following metabolic labelling with 32P ortho-phosphate in human fibroblasts. Oncogene. 1999 Jun 24;18(25):3788–3792. doi: 10.1038/sj.onc.1202733. [DOI] [PubMed] [Google Scholar]
  8. Buschmann T., Fuchs S. Y., Lee C. G., Pan Z. Q., Ronai Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell. 2000 Jun 23;101(7):753–762. doi: 10.1016/s0092-8674(00)80887-9. [DOI] [PubMed] [Google Scholar]
  9. Böttger A., Böttger V., Sparks A., Liu W. L., Howard S. F., Lane D. P. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr Biol. 1997 Nov 1;7(11):860–869. doi: 10.1016/s0960-9822(06)00374-5. [DOI] [PubMed] [Google Scholar]
  10. Dumaz N., Meek D. W. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 1999 Dec 15;18(24):7002–7010. doi: 10.1093/emboj/18.24.7002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Filhol O., Baudier J., Chambaz E. M., Cochet C. Casein kinase 2 inhibits the renaturation of complementary DNA strands mediated by p53 protein. Biochem J. 1996 May 15;316(Pt 1):331–335. doi: 10.1042/bj3160331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freedman D. A., Levine A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol. 1998 Dec;18(12):7288–7293. doi: 10.1128/mcb.18.12.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freedman D. A., Wu L., Levine A. J. Functions of the MDM2 oncoprotein. Cell Mol Life Sci. 1999 Jan;55(1):96–107. doi: 10.1007/s000180050273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerber D. A., Souquere-Besse S., Puvion F., Dubois M. F., Bensaude O., Cochet C. Heat-induced relocalization of protein kinase CK2. Implication of CK2 in the context of cellular stress. J Biol Chem. 2000 Aug 4;275(31):23919–23926. doi: 10.1074/jbc.M002697200. [DOI] [PubMed] [Google Scholar]
  16. Guerra B., Boldyreff B., Sarno S., Cesaro L., Issinger O. G., Pinna L. A. CK2: a protein kinase in need of control. Pharmacol Ther. 1999 May-Jun;82(2-3):303–313. doi: 10.1016/s0163-7258(98)00064-3. [DOI] [PubMed] [Google Scholar]
  17. Guerra B., Götz C., Wagner P., Montenarh M., Issinger O. G. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene. 1997 Jun 5;14(22):2683–2688. doi: 10.1038/sj.onc.1201112. [DOI] [PubMed] [Google Scholar]
  18. Götz C., Kartarius S., Scholtes P., Nastainczyk W., Montenarh M. Identification of a CK2 phosphorylation site in mdm2. Eur J Biochem. 1999 Dec;266(2):493–501. doi: 10.1046/j.1432-1327.1999.00882.x. [DOI] [PubMed] [Google Scholar]
  19. Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997 May 15;387(6630):296–299. doi: 10.1038/387296a0. [DOI] [PubMed] [Google Scholar]
  20. Hay T. J., Meek D. W. Multiple sites of in vivo phosphorylation in the MDM2 oncoprotein cluster within two important functional domains. FEBS Lett. 2000 Jul 28;478(1-2):183–186. doi: 10.1016/s0014-5793(00)01850-0. [DOI] [PubMed] [Google Scholar]
  21. Henning W., Rohaly G., Kolzau T., Knippschild U., Maacke H., Deppert W. MDM2 is a target of simian virus 40 in cellular transformation and during lytic infection. J Virol. 1997 Oct;71(10):7609–7618. doi: 10.1128/jvi.71.10.7609-7618.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Honda R., Tanaka H., Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997 Dec 22;420(1):25–27. doi: 10.1016/s0014-5793(97)01480-4. [DOI] [PubMed] [Google Scholar]
  23. Honda R., Yasuda H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 1999 Jan 4;18(1):22–27. doi: 10.1093/emboj/18.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hupp T. R., Meek D. W., Midgley C. A., Lane D. P. Regulation of the specific DNA binding function of p53. Cell. 1992 Nov 27;71(5):875–886. doi: 10.1016/0092-8674(92)90562-q. [DOI] [PubMed] [Google Scholar]
  25. Kapoor M., Lozano G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2834–2837. doi: 10.1073/pnas.95.6.2834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Keller D., Zeng X., Li X., Kapoor M., Iordanov M. S., Taya Y., Lozano G., Magun B., Lu H. The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem Biophys Res Commun. 1999 Aug 2;261(2):464–471. doi: 10.1006/bbrc.1999.1023. [DOI] [PubMed] [Google Scholar]
  27. Khosravi R., Maya R., Gottlieb T., Oren M., Shiloh Y., Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14973–14977. doi: 10.1073/pnas.96.26.14973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kubbutat M. H., Jones S. N., Vousden K. H. Regulation of p53 stability by Mdm2. Nature. 1997 May 15;387(6630):299–303. doi: 10.1038/387299a0. [DOI] [PubMed] [Google Scholar]
  29. Kubbutat M. H., Ludwig R. L., Levine A. J., Vousden K. H. Analysis of the degradation function of Mdm2. Cell Growth Differ. 1999 Feb;10(2):87–92. [PubMed] [Google Scholar]
  30. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  31. Litchfield D. W., Dobrowolska G., Krebs E. G. Regulation of casein kinase II by growth factors: a reevaluation. Cell Mol Biol Res. 1994;40(5-6):373–381. [PubMed] [Google Scholar]
  32. Mayo L. D., Turchi J. J., Berberich S. J. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res. 1997 Nov 15;57(22):5013–5016. [PubMed] [Google Scholar]
  33. Meek D. W. Mechanisms of switching on p53: a role for covalent modification? Oncogene. 1999 Dec 13;18(53):7666–7675. doi: 10.1038/sj.onc.1202951. [DOI] [PubMed] [Google Scholar]
  34. Meek D. W., Milne D. M. Analysis of multisite phosphorylation of the p53 tumor-suppressor protein by tryptic phosphopeptide mapping. Methods Mol Biol. 2000;99:447–463. doi: 10.1385/1-59259-054-3:447. [DOI] [PubMed] [Google Scholar]
  35. Meek D. W., Simon S., Kikkawa U., Eckhart W. The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 1990 Oct;9(10):3253–3260. doi: 10.1002/j.1460-2075.1990.tb07524.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Milne D. M., Palmer R. H., Campbell D. G., Meek D. W. Phosphorylation of the p53 tumour-suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene. 1992 Jul;7(7):1361–1369. [PubMed] [Google Scholar]
  37. Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992 Jun 26;69(7):1237–1245. doi: 10.1016/0092-8674(92)90644-r. [DOI] [PubMed] [Google Scholar]
  38. Nastainczyk W., Schmidt-Spaniol I., Boldyreff B., Issinger O. G. Isolation and characterization of a monoclonal anti-protein kinase CK2 beta-subunit antibody of the IgG class for the direct detection of CK2 beta-subunit in tissue cultures of various mammalian species and human tumors. Hybridoma. 1995 Aug;14(4):335–339. doi: 10.1089/hyb.1995.14.335. [DOI] [PubMed] [Google Scholar]
  39. Oliner J. D., Pietenpol J. A., Thiagalingam S., Gyuris J., Kinzler K. W., Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993 Apr 29;362(6423):857–860. doi: 10.1038/362857a0. [DOI] [PubMed] [Google Scholar]
  40. Prives C., Hall P. A. The p53 pathway. J Pathol. 1999 Jan;187(1):112–126. doi: 10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  41. Roth J., Dobbelstein M., Freedman D. A., Shenk T., Levine A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 1998 Jan 15;17(2):554–564. doi: 10.1093/emboj/17.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sakaguchi K., Sakamoto H., Lewis M. S., Anderson C. W., Erickson J. W., Appella E., Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry. 1997 Aug 19;36(33):10117–10124. doi: 10.1021/bi970759w. [DOI] [PubMed] [Google Scholar]
  43. Sayed M., Kim S. O., Salh B. S., Issinger O. G., Pelech S. L. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem. 2000 Jun 2;275(22):16569–16573. doi: 10.1074/jbc.M000312200. [DOI] [PubMed] [Google Scholar]
  44. Schmidt-Spaniol I., Boldyreff B., Issinger O. G. Isolation and characterization of a monoclonal anti CK-2 alpha subunit antibody of the IgG1 subclass. Hybridoma. 1992 Feb;11(1):53–59. doi: 10.1089/hyb.1992.11.53. [DOI] [PubMed] [Google Scholar]
  45. Shugar D. Development of inhibitors of protein kinases CKI and CKII and some related aspects, including donor and acceptor specificities and viral protein kinases. Cell Mol Biol Res. 1994;40(5-6):411–419. [PubMed] [Google Scholar]
  46. Songyang Z., Lu K. P., Kwon Y. T., Tsai L. H., Filhol O., Cochet C., Brickey D. A., Soderling T. R., Bartleson C., Graves D. J. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol. 1996 Nov;16(11):6486–6493. doi: 10.1128/mcb.16.11.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhao R., Gish K., Murphy M., Yin Y., Notterman D., Hoffman W. H., Tom E., Mack D. H., Levine A. J. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 2000 Apr 15;14(8):981–993. [PMC free article] [PubMed] [Google Scholar]
  48. de Stanchina E., McCurrach M. E., Zindy F., Shieh S. Y., Ferbeyre G., Samuelson A. V., Prives C., Roussel M. F., Sherr C. J., Lowe S. W. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 1998 Aug 1;12(15):2434–2442. doi: 10.1101/gad.12.15.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES