Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Apr 15;355(Pt 2):449–457. doi: 10.1042/0264-6021:3550449

Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electrospray [correction of electroscopy] MS.

C M Spickett 1, N Rennie 1, H Winter 1, L Zambonin 1, L Landi 1, A Jerlich 1, R J Schaur 1, A R Pitt 1
PMCID: PMC1221757  PMID: 11284733

Abstract

Measurement of lipid peroxidation is a commonly used method of detecting oxidative damage to biological tissues, but the most frequently used methods, including MS, measure breakdown products and are therefore indirect. We have coupled reversed-phase HPLC with positive-ionization electrospray MS (LC-MS) to provide a method for separating and detecting intact oxidized phospholipids in oxidatively stressed mammalian cells without extensive sample preparation. The elution profile of phospholipid hydroperoxides and chlorohydrins was first characterized using individual phospholipids or a defined phospholipid mixture as a model system. The facility of detection of the oxidized species in complex mixtures was greatly improved compared with direct-injection MS analysis, as they eluted earlier than the native lipids, owing to the decrease in hydrophobicity. In U937 and HL60 cells treated in vitro with t-butylhydroperoxide plus Fe(2+), lipid oxidation could not be observed by direct injection, but LC-MS allowed the detection of monohydroperoxides of palmitoyl-linoleoyl and stearoyl-linoleoyl phosphatidylcholines. The levels of hydroperoxides observed in U937 cells were found to depend on the duration and severity of the oxidative stress. In cells treated with HOCl, chlorohydrins of palmitoyloleoyl phosphatidylcholine were observed by LC-MS. The method was able to detect very small amounts of oxidized lipids compared with the levels of native lipids present. The membrane-lipid profiles of these cells were found to be quite resistant to damage until high concentrations of oxidants were used. This is the first report of direct detection by LC-MS of intact oxidized phospholipids induced in cultured cells subjected to oxidative stress.

Full Text

The Full Text of this article is available as a PDF (227.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Brügger B., Erben G., Sandhoff R., Wieland F. T., Lehmann W. D. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2339–2344. doi: 10.1073/pnas.94.6.2339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carr A. C., Vissers M. C., Domigan N. M., Winterbourn C. C. Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins. Redox Rep. 1997 Oct-Dec;3(5-6):263–271. doi: 10.1080/13510002.1997.11747122. [DOI] [PubMed] [Google Scholar]
  4. Carr A. C., Winterbourn C. C., van den Berg J. J. Peroxidase-mediated bromination of unsaturated fatty acids to form bromohydrins. Arch Biochem Biophys. 1996 Mar 15;327(2):227–233. doi: 10.1006/abbi.1996.0114. [DOI] [PubMed] [Google Scholar]
  5. Hall L. M., Murphy R. C. Analysis of stable oxidized molecular species of glycerophospholipids following treatment of red blood cell ghosts with t-butylhydroperoxide. Anal Biochem. 1998 May 1;258(2):184–194. doi: 10.1006/abio.1998.2602. [DOI] [PubMed] [Google Scholar]
  6. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  7. Herold M., Spiteller G. Enzymatic production of hydroperoxides of unsaturated fatty acids by injury of mammalian cells. Chem Phys Lipids. 1996 Mar 29;79(2):113–121. doi: 10.1016/0009-3084(95)02518-9. [DOI] [PubMed] [Google Scholar]
  8. Hsu F. F., Ma Z., Wohltmann M., Bohrer A., Nowatzke W., Ramanadham S., Turk J. Electrospray ionization/mass spectrometric analyses of human promonocytic U937 cell glycerolipids and evidence that differentiation is associated with membrane lipid composition changes that facilitate phospholipase A2 activation. J Biol Chem. 2000 Jun 2;275(22):16579–16589. doi: 10.1074/jbc.M908342199. [DOI] [PubMed] [Google Scholar]
  9. Jerlich A., Pitt A. R., Schaur R. J., Spickett C. M. Pathways of phospholipid oxidation by HOCl in human LDL detected by LC-MS. Free Radic Biol Med. 2000 Mar 1;28(5):673–682. doi: 10.1016/s0891-5849(99)00273-7. [DOI] [PubMed] [Google Scholar]
  10. Kerwin J. L., Tuininga A. R., Ericsson L. H. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res. 1994 Jun;35(6):1102–1114. [PubMed] [Google Scholar]
  11. Khaselev N., Murphy R. C. Susceptibility of plasmenyl glycerophosphoethanolamine lipids containing arachidonate to oxidative degradation. Free Radic Biol Med. 1999 Feb;26(3-4):275–284. doi: 10.1016/s0891-5849(98)00211-1. [DOI] [PubMed] [Google Scholar]
  12. Kim H. Y., Wang T. C., Ma Y. C. Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal Chem. 1994 Nov 15;66(22):3977–3982. doi: 10.1021/ac00094a020. [DOI] [PubMed] [Google Scholar]
  13. Luo X. P., Yazdanpanah M., Bhooi N., Lehotay D. C. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal Biochem. 1995 Jul 1;228(2):294–298. doi: 10.1006/abio.1995.1353. [DOI] [PubMed] [Google Scholar]
  14. Mathews W. R., Guido D. M., Fisher M. A., Jaeschke H. Lipid peroxidation as molecular mechanism of liver cell injury during reperfusion after ischemia. Free Radic Biol Med. 1994 Jun;16(6):763–770. doi: 10.1016/0891-5849(94)90191-0. [DOI] [PubMed] [Google Scholar]
  15. Nakamura T., Bratton D. L., Murphy R. C. Analysis of epoxyeicosatrienoic and monohydroxyeicosatetraenoic acids esterified to phospholipids in human red blood cells by electrospray tandem mass spectrometry. J Mass Spectrom. 1997 Aug;32(8):888–896. doi: 10.1002/(SICI)1096-9888(199708)32:8<888::AID-JMS548>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  16. Nakamura T., Henson P. M., Murphy R. C. Occurrence of oxidized metabolites of arachidonic acid esterified to phospholipids in murine lung tissue. Anal Biochem. 1998 Aug 15;262(1):23–32. doi: 10.1006/abio.1998.2749. [DOI] [PubMed] [Google Scholar]
  17. Nourooz-Zadeh J., Gopaul N. K., Barrow S., Mallet A. I., Anggård E. E. Analysis of F2-isoprostanes as indicators of non-enzymatic lipid peroxidation in vivo by gas chromatography-mass spectrometry: development of a solid-phase extraction procedure. J Chromatogr B Biomed Appl. 1995 May 19;667(2):199–208. doi: 10.1016/0378-4347(95)00035-h. [DOI] [PubMed] [Google Scholar]
  18. Quinlan G. J., Lamb N. J., Evans T. W., Gutteridge J. M. Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome. Crit Care Med. 1996 Feb;24(2):241–246. doi: 10.1097/00003246-199602000-00010. [DOI] [PubMed] [Google Scholar]
  19. Spickett C. M., Pitt A. R., Brown A. J. Direct observation of lipid hydroperoxides in phospholipid vesicles by electrospray mass spectrometry. Free Radic Biol Med. 1998 Sep;25(4-5):613–620. doi: 10.1016/s0891-5849(98)00074-4. [DOI] [PubMed] [Google Scholar]
  20. Watson A. D., Leitinger N., Navab M., Faull K. F., Hörkkö S., Witztum J. L., Palinski W., Schwenke D., Salomon R. G., Sha W. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997 May 23;272(21):13597–13607. doi: 10.1074/jbc.272.21.13597. [DOI] [PubMed] [Google Scholar]
  21. Watson A. D., Subbanagounder G., Welsbie D. S., Faull K. F., Navab M., Jung M. E., Fogelman A. M., Berliner J. A. Structural identification of a novel pro-inflammatory epoxyisoprostane phospholipid in mildly oxidized low density lipoprotein. J Biol Chem. 1999 Aug 27;274(35):24787–24798. doi: 10.1074/jbc.274.35.24787. [DOI] [PubMed] [Google Scholar]
  22. van Kuijk F. J., Thomas D. W., Stephens R. J., Dratz E. A. Gas chromatography-mass spectrometry assays for lipid peroxides. Methods Enzymol. 1990;186:388–398. doi: 10.1016/0076-6879(90)86132-f. [DOI] [PubMed] [Google Scholar]
  23. van Kuijk F. J., Thomas D. W., Stephens R. J., Dratz E. A. Gas chromatography-mass spectrometry of 4-hydroxynonenal in tissues. Methods Enzymol. 1990;186:399–406. doi: 10.1016/0076-6879(90)86133-g. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES