Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 1;355(Pt 3):545–561. doi: 10.1042/bj3550545

Electrospray and tandem mass spectrometry in biochemistry.

W J Griffiths 1, A P Jonsson 1, S Liu 1, D K Rai 1, Y Wang 1
PMCID: PMC1221768  PMID: 11311115

Abstract

Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry.

Full Text

The Full Text of this article is available as a PDF (371.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amad M. H., Cech N. B., Jackson G. S., Enke C. G. Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents. J Mass Spectrom. 2000 Jul;35(7):784–789. doi: 10.1002/1096-9888(200007)35:7<784::AID-JMS17>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  2. Chatman K., Hollenbeck T., Hagey L., Vallee M., Purdy R., Weiss F., Siuzdak G. Nanoelectrospray mass spectrometry and precursor ion monitoring for quantitative steroid analysis and attomole sensitivity. Anal Chem. 1999 Jul 1;71(13):2358–2363. doi: 10.1021/ac9806411. [DOI] [PubMed] [Google Scholar]
  3. Clauser K. R., Baker P., Burlingame A. L. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999 Jul 15;71(14):2871–2882. doi: 10.1021/ac9810516. [DOI] [PubMed] [Google Scholar]
  4. Cole R. B. Some tenets pertaining to electrospray ionization mass spectrometry. J Mass Spectrom. 2000 Jul;35(7):763–772. doi: 10.1002/1096-9888(200007)35:7<763::AID-JMS16>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  5. Dongré A. R., Somogyi A., Wysocki V. H. Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J Mass Spectrom. 1996 Apr;31(4):339–350. doi: 10.1002/(SICI)1096-9888(199604)31:4<339::AID-JMS322>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  6. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  7. Gamero-Castano M, Mora JF. Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. J Mass Spectrom. 2000 Jul;35(7):790–803. doi: 10.1002/1096-9888(200007)35:7<790::AID-JMS21>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  8. Griffiths W. J., Gustafsson M., Yang Y., Curstedt T., Sjövall J., Johansson J. Analysis of variant forms of porcine surfactant polypeptide-C by nano-electrospray mass spectrometry. Rapid Commun Mass Spectrom. 1998;12(16):1104–1114. doi: 10.1002/(SICI)1097-0231(19980831)12:16<1104::AID-RCM277>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  9. Griffiths W. J., Liu S., Yang Y., Purdy R. H., Sjövall J. Nano-electrospray tandem mass spectrometry for the analysis of neurosteroid sulphates. Rapid Commun Mass Spectrom. 1999;13(15):1595–1610. doi: 10.1002/(SICI)1097-0231(19990815)13:15<1595::AID-RCM681>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  10. Guilhaus M., Selby D., Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev. 2000 Mar-Apr;19(2):65–107. doi: 10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  11. Hamberg M., Liepinsh E., Otting G., Griffiths W. Isolation and structure of a new galactolipid from oat seeds. Lipids. 1998 Apr;33(4):355–363. doi: 10.1007/s11745-998-0215-9. [DOI] [PubMed] [Google Scholar]
  12. Harwig S. S., Kokryakov V. N., Swiderek K. M., Aleshina G. M., Zhao C., Lehrer R. I. Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 1995 Mar 27;362(1):65–69. doi: 10.1016/0014-5793(95)00210-z. [DOI] [PubMed] [Google Scholar]
  13. Henzel W. J., Billeci T. M., Stults J. T., Wong S. C., Grimley C., Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5011–5015. doi: 10.1073/pnas.90.11.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hunt D. F., Yates J. R., 3rd, Shabanowitz J., Winston S., Hauer C. R. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233–6237. doi: 10.1073/pnas.83.17.6233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ishigai M., Langridge J. I., Bordoli R. S., Gaskell S. J. Noncovalent associations of glutathione S-transferase and ligands: a study using electrospray quadrupole/time-of-flight mass spectrometry. J Am Soc Mass Spectrom. 2000 Jul;11(7):606–614. doi: 10.1016/S1044-0305(00)00127-6. [DOI] [PubMed] [Google Scholar]
  16. James P., Quadroni M., Carafoli E., Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993 Aug 31;195(1):58–64. doi: 10.1006/bbrc.1993.2009. [DOI] [PubMed] [Google Scholar]
  17. Johnson R. S., Martin S. A., Biemann K., Stults J. T., Watson J. T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem. 1987 Nov 1;59(21):2621–2625. doi: 10.1021/ac00148a019. [DOI] [PubMed] [Google Scholar]
  18. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
  19. Kebarle P. A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom. 2000 Jul;35(7):804–817. doi: 10.1002/1096-9888(200007)35:7<804::AID-JMS22>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  20. Kelleher N. L., Zubarev R. A., Bush K., Furie B., Furie B. C., McLafferty F. W., Walsh C. T. Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal Chem. 1999 Oct 1;71(19):4250–4253. doi: 10.1021/ac990684x. [DOI] [PubMed] [Google Scholar]
  21. Kerwin J. L., Wiens A. M., Ericsson L. H. Identification of fatty acids by electrospray mass spectrometry and tandem mass spectrometry. J Mass Spectrom. 1996 Feb;31(2):184–192. doi: 10.1002/(SICI)1096-9888(199602)31:2<184::AID-JMS283>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  22. Lacko A. G., Reason A. J., Nuckolls C., Kudchodkar B. J., Nair M. P., Sundarrajan G., Pritchard P. H., Morris H. R., Dell A. Characterization of recombinant human plasma lecithin: cholesterol acyltransferase (LCAT): N-linked carbohydrate structures and catalytic properties. J Lipid Res. 1998 Apr;39(4):807–820. [PubMed] [Google Scholar]
  23. Libert R., Hermans D., Draye J. P., Van Hoof F., Sokal E., de Hoffmann E. Bile acids and conjugates identified in metabolic disorders by fast atom bombardment and tandem mass spectrometry. Clin Chem. 1991 Dec;37(12):2102–2110. [PubMed] [Google Scholar]
  24. Liepinsh E., Kitamura M., Murakami T., Nakaya T., Otting G. Pathway of chymotrypsin evolution suggested by the structure of the FMN-binding protein from Desulfovibrio vulgaris (Miyazaki F) Nat Struct Biol. 1997 Dec;4(12):975–979. doi: 10.1038/nsb1297-975. [DOI] [PubMed] [Google Scholar]
  25. Light-Wahl K. J., Loo J. A., Edmonds C. G., Smith R. D., Witkowska H. E., Shackleton C. H., Wu C. S. Collisionally activated dissociation and tandem mass spectrometry of intact hemoglobin beta-chain variant proteins with electrospray ionization. Biol Mass Spectrom. 1993 Feb;22(2):112–120. doi: 10.1002/bms.1200220203. [DOI] [PubMed] [Google Scholar]
  26. Loo J. A., Edmonds C. G., Smith R. D. Tandem mass spectrometry of very large molecules. 2. Dissociation of multiply charged proline-containing proteins from electrospray ionization. Anal Chem. 1993 Feb 15;65(4):425–438. doi: 10.1021/ac00052a020. [DOI] [PubMed] [Google Scholar]
  27. Mann M., Højrup P., Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom. 1993 Jun;22(6):338–345. doi: 10.1002/bms.1200220605. [DOI] [PubMed] [Google Scholar]
  28. Mann M., Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994 Dec 15;66(24):4390–4399. doi: 10.1021/ac00096a002. [DOI] [PubMed] [Google Scholar]
  29. Morris H. R., Paxton T., Dell A., Langhorne J., Berg M., Bordoli R. S., Hoyes J., Bateman R. H. High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom. 1996;10(8):889–896. doi: 10.1002/(SICI)1097-0231(19960610)10:8<889::AID-RCM615>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  30. Murray K. K. DNA sequencing by mass spectrometry. J Mass Spectrom. 1996 Nov;31(11):1203–1215. doi: 10.1002/(SICI)1096-9888(199611)31:11<1203::AID-JMS445>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  31. Mørtz E., O'Connor P. B., Roepstorff P., Kelleher N. L., Wood T. D., McLafferty F. W., Mann M. Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8264–8267. doi: 10.1073/pnas.93.16.8264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nair H., Somogyi A., Wysocki V. H. Effect of alkyl substitution at the amide nitrogen on amide bond cleavage: electrospray ionization/surface-induced dissociation fragmentation of substance P and two alkylated analogs. J Mass Spectrom. 1996 Oct;31(10):1141–1148. doi: 10.1002/(SICI)1096-9888(199610)31:10<1141::AID-JMS402>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  33. Nelson R. W., Dogruel D., Williams P. Mass determination of human immunoglobulin IgM using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1994 Aug;8(8):627–631. doi: 10.1002/rcm.1290080811. [DOI] [PubMed] [Google Scholar]
  34. Nettleton E. J., Sunde M., Lai Z., Kelly J. W., Dobson C. M., Robinson C. V. Protein subunit interactions and structural integrity of amyloidogenic transthyretins: evidence from electrospray mass spectrometry. J Mol Biol. 1998 Aug 21;281(3):553–564. doi: 10.1006/jmbi.1998.1937. [DOI] [PubMed] [Google Scholar]
  35. Pappin D. J., Hojrup P., Bleasby A. J. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993 Jun 1;3(6):327–332. doi: 10.1016/0960-9822(93)90195-t. [DOI] [PubMed] [Google Scholar]
  36. Patterson S. D., Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995 Oct;16(10):1791–1814. doi: 10.1002/elps.11501601299. [DOI] [PubMed] [Google Scholar]
  37. Pramanik B. N., Bartner P. L., Mirza U. A., Liu Y. H., Ganguly A. K. Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology. J Mass Spectrom. 1998 Oct;33(10):911–920. doi: 10.1002/(SICI)1096-9888(1998100)33:10<911::AID-JMS737>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  38. Roepstorff P., Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984 Nov;11(11):601–601. doi: 10.1002/bms.1200111109. [DOI] [PubMed] [Google Scholar]
  39. Schnier P. D., Price W. D., Jockusch R. A., Williams E. R. Blackbody infrared radiative dissociation of bradykinin and its analogues: energetics, dynamics, and evidence for salt-bridge structures in the gas phase. J Am Chem Soc. 1996 Jul 31;118(30):7178–7189. doi: 10.1021/ja9609157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shevchenko A., Jensen O. N., Podtelejnikov A. V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Shevchenko A., Boucherie H., Mann M. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14440–14445. doi: 10.1073/pnas.93.25.14440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  42. Suto K., Kawagoe K., Shibata N., Morimoto Y., Higuchi Y., Kitamura M., Nakaya T., Yasuoka N. Crystallization and preliminary crystallographic studies of FMN-binding protein from Desulfovibrio vulgaris miyazaki F. Acta Crystallogr D Biol Crystallogr. 1999 May;55(Pt 5):1089–1090. doi: 10.1107/s0907444999003169. [DOI] [PubMed] [Google Scholar]
  43. Teng-umnuay P., Morris H. R., Dell A., Panico M., Paxton T., West C. M. The cytoplasmic F-box binding protein SKP1 contains a novel pentasaccharide linked to hydroxyproline in Dictyostelium. J Biol Chem. 1998 Jul 17;273(29):18242–18249. doi: 10.1074/jbc.273.29.18242. [DOI] [PubMed] [Google Scholar]
  44. Tomer K. B., Gross M. L. Fast atom bombardment and tandem mass spectrometry for structure determination: remote site fragmentation of steroid conjugates and bile salts. Biomed Environ Mass Spectrom. 1988 Jan 15;15(2):89–98. doi: 10.1002/bms.1200150206. [DOI] [PubMed] [Google Scholar]
  45. Tomer K. B., Jensen N. J., Gross M. L., Whitney J. Fast atom bombardment combined with tandem mass spectrometry for determination of bile salts and their conjugates. Biomed Environ Mass Spectrom. 1986 Jun;13(6):265–272. doi: 10.1002/bms.1200130602. [DOI] [PubMed] [Google Scholar]
  46. Tsao S. Y., He Y., Cheng P. M., Ho S., Leung S. F., Chang R. S. Epstein-Barr virus in oropharyngeal and nasopharyngeal secretions of patients with nasopharyngeal carcinoma and control subjects. Intervirology. 1991;32(4):209–215. doi: 10.1159/000150202. [DOI] [PubMed] [Google Scholar]
  47. Tyler A. N., Clayton E., Green B. N. Exact mass measurement of polar organic molecules at low resolution using electrospray ionization and a quadrupole mass spectrometer. Anal Chem. 1996 Oct 15;68(20):3561–3569. doi: 10.1021/ac9603791. [DOI] [PubMed] [Google Scholar]
  48. Van Berkel G. J. Electrolytic deposition of metals on to the high-voltage contact in an electrospray emitter: implications for gas-phase ion formation. J Mass Spectrom. 2000 Jul;35(7):773–783. doi: 10.1002/1096-9888(200007)35:7<773::AID-JMS4>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  49. Wang Y., Griffiths W. J., Curstedt T., Johansson J. Porcine pulmonary surfactant preparations contain the antibacterial peptide prophenin and a C-terminal 18-residue fragment thereof. FEBS Lett. 1999 Oct 29;460(2):257–262. doi: 10.1016/s0014-5793(99)01363-0. [DOI] [PubMed] [Google Scholar]
  50. Wang Y., Johansson J., Griffiths W. J. Characterisation of variant forms of prophenin: mechanistic aspects of the fragmentation of proline-rich peptides. Rapid Commun Mass Spectrom. 2000;14(23):2182–2202. doi: 10.1002/1097-0231(20001215)14:23<2182::AID-RCM151>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  51. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature. 1996 Feb 1;379(6564):466–469. doi: 10.1038/379466a0. [DOI] [PubMed] [Google Scholar]
  52. Witkowska H. E., Green B. N., Carlquist M., Shackleton C. H. Intact noncovalent dimer of estrogen receptor ligand-binding domain can be detected by electrospray ionization mass spectrometry. Steroids. 1996 Jul;61(7):433–438. doi: 10.1016/0039-128x(96)00075-x. [DOI] [PubMed] [Google Scholar]
  53. Yang Y., Griffiths W. J., Nazer H., Sjövall J. Analysis of bile acids and bile alcohols in urine by capillary column liquid chromatography-mass spectrometry using fast atom bombardment or electrospray ionization and collision-induced dissociation. Biomed Chromatogr. 1997 Jul-Aug;11(4):240–255. doi: 10.1002/(SICI)1099-0801(199707)11:4<240::AID-BMC686>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  54. Yang Y., Griffiths W. J., Nordling M., Nygren J., Möller L., Bergman J., Liepinsh E., Otting G., Gustafsson J. A., Rafter J. Ring opening of benzo[a]pyrene in the germ-free rat is a novel pathway for formation of potentially genotoxic metabolites. Biochemistry. 2000 Dec 19;39(50):15585–15591. doi: 10.1021/bi001148y. [DOI] [PubMed] [Google Scholar]
  55. Yates J. R., 3rd Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998 Jan;33(1):1–19. doi: 10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  56. Yates J. R., 3rd, Speicher S., Griffin P. R., Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem. 1993 Nov 1;214(2):397–408. doi: 10.1006/abio.1993.1514. [DOI] [PubMed] [Google Scholar]
  57. de Urquiza A. M., Liu S., Sjöberg M., Zetterström R. H., Griffiths W., Sjövall J., Perlmann T. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000 Dec 15;290(5499):2140–2144. doi: 10.1126/science.290.5499.2140. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES