Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 May 15;356(Pt 1):87–96. doi: 10.1042/0264-6021:3560087

Heterodimerization of the epidermal-growth-factor (EGF) receptor and ErbB2 and the affinity of EGF binding are regulated by different mechanisms.

L E Johannessen 1, K E Haugen 1, A C østvold 1, E Stang 1, I H Madshus 1
PMCID: PMC1221815  PMID: 11336639

Abstract

When clathrin-dependent endocytosis is inhibited in HeLa cells by overexpression of a K44A (Lys(44)-->Ala) mutant of the GTPase dynamin, high-affinity binding of epidermal growth factor (EGF) to the EGF receptor (EGFR) is disrupted [Ringerike, Stang, Johannessen, Sandnes, Levy and Madshus (1998) J. Biol. Chem. 273, 16639-16642]. We now report that the effect of [K44A]dynamin on EGF binding was counteracted by incubation with the non-specific kinase inhibitor staurosporine (SSP), implying that a protein kinase is responsible for disrupted high-affinity binding of EGF upon overexpression of [K44A]dynamin. The effect of [K44A]dynamin on EGF binding was not due to altered phosphorylation of the EGFR, suggesting that the activated kinase is responsible for phosphorylation of a substrate other than EGFR. The number of EGFR molecules was increased in cells overexpressing [K44A]dynamin, while the number of proto-oncoprotein ErbB2 molecules was unaltered. EGF-induced receptor dimerization was not influenced by overexpression of [K44A]dynamin. ErbB2-EGFR heterodimer formation was found to be ligand-independent, and the number of heterodimers was not altered by overexpression of [K44A]dynamin. Neither SSP nor the phorbol ester PMA, which disrupts high-affinity EGF-EGFR interaction, had any effect on the EGFR homo- or hetero-dimerization. Furthermore, the EGF-induced tyrosine phosphorylation of ErbB2 was not affected by overexpression of [K44A]dynamin, implying that EGFR-ErbB2 dimers were fully functional. Our results strongly suggest that high-affinity binding of EGF and EGFR-ErbB2 heterodimerization are regulated by different mechanisms.

Full Text

The Full Text of this article is available as a PDF (254.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbier A. J., Poppleton H. M., Yigzaw Y., Mullenix J. B., Wiepz G. J., Bertics P. J., Patel T. B. Transmodulation of epidermal growth factor receptor function by cyclic AMP-dependent protein kinase. J Biol Chem. 1999 May 14;274(20):14067–14073. doi: 10.1074/jbc.274.20.14067. [DOI] [PubMed] [Google Scholar]
  2. Beerli R. R., Graus-Porta D., Woods-Cook K., Chen X., Yarden Y., Hynes N. E. Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol Cell Biol. 1995 Dec;15(12):6496–6505. doi: 10.1128/mcb.15.12.6496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Böni-Schnetzler M., Pilch P. F. Mechanism of epidermal growth factor receptor autophosphorylation and high-affinity binding. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7832–7836. doi: 10.1073/pnas.84.22.7832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carpenter G. Properties of the receptor for epidermal growth factor. Cell. 1984 Jun;37(2):357–358. doi: 10.1016/0092-8674(84)90365-9. [DOI] [PubMed] [Google Scholar]
  5. Cochet C., Kashles O., Chambaz E. M., Borrello I., King C. R., Schlessinger J. Demonstration of epidermal growth factor-induced receptor dimerization in living cells using a chemical covalent cross-linking agent. J Biol Chem. 1988 Mar 5;263(7):3290–3295. [PubMed] [Google Scholar]
  6. Countaway J. L., McQuilkin P., Gironès N., Davis R. J. Multisite phosphorylation of the epidermal growth factor receptor. Use of site-directed mutagenesis to examine the role of serine/threonine phosphorylation. J Biol Chem. 1990 Feb 25;265(6):3407–3416. [PubMed] [Google Scholar]
  7. Countaway J. L., Nairn A. C., Davis R. J. Mechanism of desensitization of the epidermal growth factor receptor protein-tyrosine kinase. J Biol Chem. 1992 Jan 15;267(2):1129–1140. [PubMed] [Google Scholar]
  8. Damke H., Baba T., Warnock D. E., Schmid S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol. 1994 Nov;127(4):915–934. doi: 10.1083/jcb.127.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Damke H., Gossen M., Freundlieb S., Bujard H., Schmid S. L. Tightly regulated and inducible expression of dominant interfering dynamin mutant in stably transformed HeLa cells. Methods Enzymol. 1995;257:209–220. doi: 10.1016/s0076-6879(95)57026-8. [DOI] [PubMed] [Google Scholar]
  10. Davis R. J., Czech M. P. Stimulation of epidermal growth factor receptor threonine 654 phosphorylation by platelet-derived growth factor in protein kinase C-deficient human fibroblasts. J Biol Chem. 1987 May 15;262(14):6832–6841. [PubMed] [Google Scholar]
  11. Davis R. J. Independent mechanisms account for the regulation by protein kinase C of the epidermal growth factor receptor affinity and tyrosine-protein kinase activity. J Biol Chem. 1988 Jul 5;263(19):9462–9469. [PubMed] [Google Scholar]
  12. Downward J., Parker P., Waterfield M. D. Autophosphorylation sites on the epidermal growth factor receptor. Nature. 1984 Oct 4;311(5985):483–485. doi: 10.1038/311483a0. [DOI] [PubMed] [Google Scholar]
  13. Feinmesser R. L., Wicks S. J., Taverner C. J., Chantry A. Ca2+/calmodulin-dependent kinase II phosphorylates the epidermal growth factor receptor on multiple sites in the cytoplasmic tail and serine 744 within the kinase domain to regulate signal generation. J Biol Chem. 1999 Jun 4;274(23):16168–16173. doi: 10.1074/jbc.274.23.16168. [DOI] [PubMed] [Google Scholar]
  14. Friedman B. A., van Amsterdam J., Fujiki H., Rosner M. R. Phosphorylation at threonine-654 is not required for negative regulation of the epidermal growth factor receptor by non-phorbol tumor promoters. Proc Natl Acad Sci U S A. 1989 Feb;86(3):812–816. doi: 10.1073/pnas.86.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Friedman B., Fujiki H., Rosner M. R. Regulation of the epidermal growth factor receptor by growth-modulating agents: effects of staurosporine, a protein kinase inhibitor. Cancer Res. 1990 Feb 1;50(3):533–538. [PubMed] [Google Scholar]
  16. Ghosh-Dastidar P., Fox C. F. cAMP-dependent protein kinase stimulates epidermal growth factor-dependent phosphorylation of epidermal growth factor receptors. J Biol Chem. 1984 Mar 25;259(6):3864–3869. [PubMed] [Google Scholar]
  17. Graus-Porta D., Beerli R. R., Daly J. M., Hynes N. E. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997 Apr 1;16(7):1647–1655. doi: 10.1093/emboj/16.7.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gray G. M., Macara I. G. The pp60v-src tyrosine kinase desensitizes epidermal growth factor binding to 3T3 fibroblasts by two distinct protein kinase C-independent mechanisms. J Biol Chem. 1988 Aug 5;263(22):10714–10719. [PubMed] [Google Scholar]
  19. Greenfield C., Hiles I., Waterfield M. D., Federwisch M., Wollmer A., Blundell T. L., McDonald N. Epidermal growth factor binding induces a conformational change in the external domain of its receptor. EMBO J. 1989 Dec 20;8(13):4115–4123. doi: 10.1002/j.1460-2075.1989.tb08596.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell. 1995 Jan 27;80(2):213–223. doi: 10.1016/0092-8674(95)90404-2. [DOI] [PubMed] [Google Scholar]
  21. Hunter T., Ling N., Cooper J. A. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature. 1984 Oct 4;311(5985):480–483. doi: 10.1038/311480a0. [DOI] [PubMed] [Google Scholar]
  22. Karunagaran D., Tzahar E., Beerli R. R., Chen X., Graus-Porta D., Ratzkin B. J., Seger R., Hynes N. E., Yarden Y. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996 Jan 15;15(2):254–264. [PMC free article] [PubMed] [Google Scholar]
  23. King A. C., Cuatrecasas P. Resolution of high and low affinity epidermal growth factor receptors. Inhibition of high affinity component by low temperature, cycloheximide, and phorbol esters. J Biol Chem. 1982 Mar 25;257(6):3053–3060. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Landreth G. E., Williams L. K., Rieser G. D. Association of the epidermal growth factor receptor kinase with the detergent-insoluble cytoskeleton of A431 cells. J Cell Biol. 1985 Oct;101(4):1341–1350. doi: 10.1083/jcb.101.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lenferink A. E., Pinkas-Kramarski R., van de Poll M. L., van Vugt M. J., Klapper L. N., Tzahar E., Waterman H., Sela M., van Zoelen E. J., Yarden Y. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 1998 Jun 15;17(12):3385–3397. doi: 10.1093/emboj/17.12.3385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Northwood I. C., Davis R. J. Protein kinase C inhibition of the epidermal growth factor receptor tyrosine protein kinase activity is independent of the oligomeric state of the receptor. J Biol Chem. 1989 Apr 5;264(10):5746–5750. [PubMed] [Google Scholar]
  28. Pinkas-Kramarski R., Soussan L., Waterman H., Levkowitz G., Alroy I., Klapper L., Lavi S., Seger R., Ratzkin B. J., Sela M. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996 May 15;15(10):2452–2467. [PMC free article] [PubMed] [Google Scholar]
  29. Qian X., Dougall W. C., Hellman M. E., Greene M. I. Kinase-deficient neu proteins suppress epidermal growth factor receptor function and abolish cell transformation. Oncogene. 1994 May;9(5):1507–1514. [PubMed] [Google Scholar]
  30. Quian X. L., Decker S. J., Greene M. I. p185c-neu and epidermal growth factor receptor associate into a structure composed of activated kinases. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1330–1334. doi: 10.1073/pnas.89.4.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rackoff W. R., Rubin R. A., Earp H. S. Phosphorylation of the hepatic EGF receptor with cAMP-dependent protein kinase. Mol Cell Endocrinol. 1984 Feb;34(2):113–119. doi: 10.1016/0303-7207(84)90062-5. [DOI] [PubMed] [Google Scholar]
  32. Ringerike T., Stang E., Johannessen L. E., Sandnes D., Levy F. O., Madshus I. H. High-affinity binding of epidermal growth factor (EGF) to EGF receptor is disrupted by overexpression of mutant dynamin (K44A). J Biol Chem. 1998 Jul 3;273(27):16639–16642. doi: 10.1074/jbc.273.27.16639. [DOI] [PubMed] [Google Scholar]
  33. Roy L. M., Gittinger C. K., Landreth G. E. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells. J Cell Physiol. 1989 Aug;140(2):295–304. doi: 10.1002/jcp.1041400215. [DOI] [PubMed] [Google Scholar]
  34. Sanghera J. S., Hall F. L., Warburton D., Campbell D., Pelech S. L. Identification of epidermal growth factor Thr-669 phosphorylation site peptide kinases as distinct MAP kinases and p34cdc2. Biochim Biophys Acta. 1992 Jun 29;1135(3):335–342. doi: 10.1016/0167-4889(92)90240-c. [DOI] [PubMed] [Google Scholar]
  35. Schlessinger J. The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry. 1988 May 3;27(9):3119–3123. doi: 10.1021/bi00409a002. [DOI] [PubMed] [Google Scholar]
  36. Schlessinger J., Ullrich A. Growth factor signaling by receptor tyrosine kinases. Neuron. 1992 Sep;9(3):383–391. doi: 10.1016/0896-6273(92)90177-f. [DOI] [PubMed] [Google Scholar]
  37. Sorkin A. D., Teslenko L. V., Nikolsky N. N. The endocytosis of epidermal growth factor in A431 cells: a pH of microenvironment and the dynamics of receptor complex dissociation. Exp Cell Res. 1988 Mar;175(1):192–205. doi: 10.1016/0014-4827(88)90266-2. [DOI] [PubMed] [Google Scholar]
  38. Sorkin A., Carpenter G. Dimerization of internalized epidermal growth factor receptors. J Biol Chem. 1991 Dec 5;266(34):23453–23460. [PubMed] [Google Scholar]
  39. Sorokin A., Lemmon M. A., Ullrich A., Schlessinger J. Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond. J Biol Chem. 1994 Apr 1;269(13):9752–9759. [PubMed] [Google Scholar]
  40. Stang E., Johannessen L. E., Knardal S. L., Madshus I. H. Polyubiquitination of the epidermal growth factor receptor occurs at the plasma membrane upon ligand-induced activation. J Biol Chem. 2000 May 5;275(18):13940–13947. doi: 10.1074/jbc.275.18.13940. [DOI] [PubMed] [Google Scholar]
  41. Theroux S. J., Taglienti-Sian C., Nair N., Countaway J. L., Robinson H. L., Davis R. J. Increased oncogenic potential of ErbB is associated with the loss of a COOH-terminal domain serine phosphorylation site. J Biol Chem. 1992 Apr 25;267(12):7967–7970. [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  44. Van der Heyden M. A., Nievers M., Verkleij A. J., Boonstra J., Van Bergen en Henegouwen P. M. Identification of an intracellular domain of the EGF receptor required for high-affinity binding of EGF. FEBS Lett. 1997 Jun 30;410(2-3):265–268. doi: 10.1016/s0014-5793(97)00599-1. [DOI] [PubMed] [Google Scholar]
  45. Vieira A. V., Lamaze C., Schmid S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science. 1996 Dec 20;274(5295):2086–2089. doi: 10.1126/science.274.5295.2086. [DOI] [PubMed] [Google Scholar]
  46. Wada T., Qian X. L., Greene M. I. Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell. 1990 Jun 29;61(7):1339–1347. doi: 10.1016/0092-8674(90)90697-d. [DOI] [PubMed] [Google Scholar]
  47. Walker F., Burgess A. W. Reconstitution of the high affinity epidermal growth factor receptor on cell-free membranes after transmodulation by platelet-derived growth factor. J Biol Chem. 1991 Feb 15;266(5):2746–2752. [PubMed] [Google Scholar]
  48. Wang L. M., Kuo A., Alimandi M., Veri M. C., Lee C. C., Kapoor V., Ellmore N., Chen X. H., Pierce J. H. ErbB2 expression increases the spectrum and potency of ligand-mediated signal transduction through ErbB4. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6809–6814. doi: 10.1073/pnas.95.12.6809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wiegant F. A., Blok F. J., Defize L. H., Linnemans W. A., Verkley A. J., Boonstra J. Epidermal growth factor receptors associated to cytoskeletal elements of epidermoid carcinoma (A431) cells. J Cell Biol. 1986 Jul;103(1):87–94. doi: 10.1083/jcb.103.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Worthylake R., Opresko L. K., Wiley H. S. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem. 1999 Mar 26;274(13):8865–8874. doi: 10.1074/jbc.274.13.8865. [DOI] [PubMed] [Google Scholar]
  51. van Bergen en Henegouwen P. M., den Hartigh J. C., Romeyn P., Verkleij A. J., Boonstra J. The epidermal growth factor receptor is associated with actin filaments. Exp Cell Res. 1992 Mar;199(1):90–97. doi: 10.1016/0014-4827(92)90465-k. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES