Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):387–394. doi: 10.1042/0264-6021:3560387

A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern.

A Prior 1, J T Jones 1, V C Blok 1, J Beauchamp 1, L McDermott 1, A Cooper 1, M W Kennedy 1
PMCID: PMC1221849  PMID: 11368765

Abstract

Parasitic nematodes produce at least two structurally novel classes of small helix-rich retinol- and fatty-acid-binding proteins that have no counterparts in their plant or animal hosts and thus represent potential targets for new nematicides. Here we describe a protein (Gp-FAR-1) from the plant-parasitic nematode Globodera pallida, which is a member of the nematode-specific fatty-acid- and retinol-binding (FAR) family of proteins but localizes to the surface of this species, placing it in a strategic position for interaction with the host. Recombinant Gp-FAR-1 was found to bind retinol, cis-parinaric acid and the fluorophore-tagged lipids 11-(dansylamino)undecanoic acid and dansyl-D,L-alpha-amino-octanoic acid. The fluorescence emission characteristics of the dansylated analogues indicated that the entire ligand enters the binding cavity. Fluorescence competition experiments showed that Gp-FAR-1 binds fatty acids in the range C(11) to C(24), with optimal binding at C(15). Intrinsic fluorescence analysis of a mutant protein into which a tryptophan residue had been inserted supported computer-based predictions of the position of this residue at the protein's interior and possibly also at the binding site. Of direct relevance to plant defence systems was the observation that Gp-FAR-1 binds two lipids (linolenic and linoleic acids) that are precursors of plant defence compounds and the jasmonic acid signalling pathway. Moreover, Gp-FAR-1 was found to inhibit the lipoxygenase-mediated modification of these substrates in vitro. Thus not only does Gp-FAR-1 function as a broad-spectrum retinol- and fatty-acid-binding protein, the results are consistent with the idea that Gp-FAR-1 is involved in the evasion of primary host plant defence systems.

Full Text

The Full Text of this article is available as a PDF (289.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay S. L., Smith A. M. Rapid isolation of monoclonal antibodies specific for cell surface differentiation antigens. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4336–4340. doi: 10.1073/pnas.83.12.4336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaxter M. L., De Ley P., Garey J. R., Liu L. X., Scheldeman P., Vierstraete A., Vanfleteren J. R., Mackey L. Y., Dorris M., Frisse L. M. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998 Mar 5;392(6671):71–75. doi: 10.1038/32160. [DOI] [PubMed] [Google Scholar]
  3. Blaxter M. Caenorhabditis elegans is a nematode. Science. 1998 Dec 11;282(5396):2041–2046. doi: 10.1126/science.282.5396.2041. [DOI] [PubMed] [Google Scholar]
  4. Curry S., Mandelkow H., Brick P., Franks N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. 1998 Sep;5(9):827–835. doi: 10.1038/1869. [DOI] [PubMed] [Google Scholar]
  5. Duncan L. H., Robertson L., Robertson W. M., Kusel J. R. Isolation and characterization of secretions from the plant-parasitic nematode Globodera pallida. Parasitology. 1997 Oct;115(Pt 4):429–438. doi: 10.1017/s0031182097001443. [DOI] [PubMed] [Google Scholar]
  6. Eftink M. R., Ghiron C. A. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry. 1976 Feb 10;15(3):672–680. doi: 10.1021/bi00648a035. [DOI] [PubMed] [Google Scholar]
  7. Farmer E. E. Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol. 1994 Dec;26(5):1423–1437. doi: 10.1007/BF00016483. [DOI] [PubMed] [Google Scholar]
  8. Frapin D., Dufour E., Haertle T. Probing the fatty acid binding site of beta-lactoglobulins. J Protein Chem. 1993 Aug;12(4):443–449. doi: 10.1007/BF01025044. [DOI] [PubMed] [Google Scholar]
  9. Idziak C., Price N. C., Kelly S. M., Krell T., Boam D. J., Lapthorn A. J., Coggins J. R. The interaction of shikimate kinase from Erwinia chrystanthemi with substrates. Biochem Soc Trans. 1997 Nov;25(4):S627–S627. doi: 10.1042/bst025s627. [DOI] [PubMed] [Google Scholar]
  10. Jones J. T., Curtis R. H., Wightman P. J., Burrows P. R. Isolation and characterization of a putative collagen gene from the potato cyst nematode Globodera pallida. Parasitology. 1996 Dec;113(Pt 6):581–588. doi: 10.1017/s0031182000067639. [DOI] [PubMed] [Google Scholar]
  11. Kennedy M. W., Brass A., McCruden A. B., Price N. C., Kelly S. M., Cooper A. The ABA-1 allergen of the parasitic nematode Ascaris suum: fatty acid and retinoid binding function and structural characterization. Biochemistry. 1995 May 23;34(20):6700–6710. doi: 10.1021/bi00020a015. [DOI] [PubMed] [Google Scholar]
  12. Kennedy M. W., Britton C., Price N. C., Kelly S. M., Cooper A. The DvA-1 polyprotein of the parasitic nematode Dictyocaulus viviparus. A small helix-rich lipid-binding protein. J Biol Chem. 1995 Aug 18;270(33):19277–19281. doi: 10.1074/jbc.270.33.19277. [DOI] [PubMed] [Google Scholar]
  13. Kennedy M. W., Garside L. H., Goodrick L. E., McDermott L., Brass A., Price N. C., Kelly S. M., Cooper A., Bradley J. E. The Ov20 protein of the parasitic nematode Onchocerca volvulus. A structurally novel class of small helix-rich retinol-binding proteins. J Biol Chem. 1997 Nov 21;272(47):29442–29448. doi: 10.1074/jbc.272.47.29442. [DOI] [PubMed] [Google Scholar]
  14. Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
  15. Macgregor R. B., Weber G. Estimation of the polarity of the protein interior by optical spectroscopy. Nature. 1986 Jan 2;319(6048):70–73. doi: 10.1038/319070a0. [DOI] [PubMed] [Google Scholar]
  16. Moore J. D., Hawkins A. R., Charles I. G., Deka R., Coggins J. R., Cooper A., Kelly S. M., Price N. C. Characterization of the type I dehydroquinase from Salmonella typhi. Biochem J. 1993 Oct 1;295(Pt 1):277–285. doi: 10.1042/bj2950277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  18. Popeijus H., Overmars H., Jones J., Blok V., Goverse A., Helder J., Schots A., Bakker J., Smant G. Degradation of plant cell walls by a nematode. Nature. 2000 Jul 6;406(6791):36–37. doi: 10.1038/35017641. [DOI] [PubMed] [Google Scholar]
  19. Robertson L., Robertson W. M., Sobczak M., Helder J., Tetaud E., Ariyanayagam M. R., Ferguson M. A., Fairlamb A., Jones J. T. Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol Biochem Parasitol. 2000 Nov;111(1):41–49. doi: 10.1016/s0166-6851(00)00295-4. [DOI] [PubMed] [Google Scholar]
  20. Smant G., Stokkermans J. P., Yan Y., de Boer J. M., Baum T. J., Wang X., Hussey R. S., Gommers F. J., Henrissat B., Davis E. L. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4906–4911. doi: 10.1073/pnas.95.9.4906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thumser A. E., Evans C., Worrall A. F., Wilton D. C. Effect on ligand binding of arginine mutations in recombinant rat liver fatty acid-binding protein. Biochem J. 1994 Jan 1;297(Pt 1):103–107. doi: 10.1042/bj2970103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thumser A. E., Wilton D. C. Characterization of binding and structural properties of rat liver fatty-acid-binding protein using tryptophan mutants. Biochem J. 1994 Jun 15;300(Pt 3):827–833. doi: 10.1042/bj3000827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tree T. I., Gillespie A. J., Shepley K. J., Blaxter M. L., Tuan R. S., Bradley J. E. Characterisation of an immunodominant glycoprotein antigen of Onchocerca volvulus with homologues in other filarial nematodes and Caenorhabditis elegans. Mol Biochem Parasitol. 1995 Feb;69(2):185–195. doi: 10.1016/0166-6851(94)00204-z. [DOI] [PubMed] [Google Scholar]
  24. Van Nieuwenhoven F. A., Van der Vusse G. J., Glatz J. F. Membrane-associated and cytoplasmic fatty acid-binding proteins. Lipids. 1996 Mar;31 (Suppl):S223–S227. doi: 10.1007/BF02637080. [DOI] [PubMed] [Google Scholar]
  25. Veerkamp J. H., van Moerkerk H. T., Prinsen C. F., van Kuppevelt T. H. Structural and functional studies on different human FABP types. Mol Cell Biochem. 1999 Feb;192(1-2):137–142. [PubMed] [Google Scholar]
  26. Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue. Biochem J. 1986 Sep 1;238(2):419–424. doi: 10.1042/bj2380419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wu S. Y., Pérez M. D., Puyol P., Sawyer L. beta-lactoglobulin binds palmitate within its central cavity. J Biol Chem. 1999 Jan 1;274(1):170–174. doi: 10.1074/jbc.274.1.170. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES