Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 1;356(Pt 2):613–619. doi: 10.1042/0264-6021:3560613

Human NADPH-P450 oxidoreductase modulates the level of cytochrome P450 CYP2D6 holoprotein via haem oxygenase-dependent and -independent pathways.

S Ding 1, D Yao 1, Y Y Deeni 1, B Burchell 1, C R Wolf 1, T Friedberg 1
PMCID: PMC1221876  PMID: 11368792

Abstract

NADPH-P450 oxidoreductase (CPR) is essential for the activity of cytochrome P450 (P450). Previous studies demonstrated that CPR regulates the levels of various P450 isoforms in vitro. We investigated the mechanistic basis for this regulation. By transfection of Chinese hamster ovary DUKXB11 cells we obtained the cell line DUKX/2D6, which expressed human CYP2D6, a P450 isoform. Subsequently, DUKX/2D6 cells were transfected with human CPR cDNA to generate the cell line DUKX/2D6/CPR-3. Expression of recombinant CPR decreased the level of spectrally detectable CYP2D6 holoprotein in DUKX/2D6/CPR-3 cells by 70%, whereas the level of immunodetectable apoprotein remained unchanged. Addition of the radical scavenger DMSO increased levels of CYP2D6 holoenzyme in DUKX/2D6/CPR-3 cells but not in DUKX/2D6 cells. A similar effect was noted when cells were grown in the presence of hemin. Importantly, combined treatment with DMSO and hemin increased levels of CYP2D6 holoenzyme in DUKX/2D6/CPR-3 but not in DUKX/2D6 cells even further than either treatment alone. None of these treatments affected the level of immunodetectable CYP2D6. This demonstrates that expression of CPR increases production of damaging radicals but also that CPR may alter haem homoeostasis. In agreement with this, the activity of haem oxygenase, a rate-limiting enzyme in haem metabolism, was compared with that in DUKX/DHFR control cells (expressing dihydrofolate reductase), and was 3-fold higher in DUKX/2D6/CPR-3 but similar in DUKX/2D6 cells. Furthermore, treatment of cells with sodium arsenite increased levels of haem oxygenase concomitant with a marked decrease of spectrally detectable CYP2D6 and a rise in levels of ferritin, which sequesters free iron released from the destruction of haem. These data demonstrate that CPR regulates P450 activity by supplying electrons and also by altering P450 levels via radical-and haem oxygenase-mediated pathways.

Full Text

The Full Text of this article is available as a PDF (175.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams J. M., Thorpe S. M., Schimke R. T. Intronic positioning maximizes co-expression and co-amplification of nonselectable heterologous genes. J Biol Chem. 1989 Aug 25;264(24):14016–14021. [PubMed] [Google Scholar]
  2. Ahmed S. S., Napoli K. L., Strobel H. W. Oxygen radical formation during cytochrome P450-catalyzed cyclosporine metabolism in rat and human liver microsomes at varying hydrogen ion concentrations. Mol Cell Biochem. 1995 Oct 18;151(2):131–140. doi: 10.1007/BF01322335. [DOI] [PubMed] [Google Scholar]
  3. Balla J., Jacob H. S., Balla G., Nath K., Eaton J. W., Vercellotti G. M. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9285–9289. doi: 10.1073/pnas.90.20.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker C. W., Fagan J. B., Pasco D. S. Interleukin-1 beta suppresses the induction of P4501A1 and P4501A2 mRNAs in isolated hepatocytes. J Biol Chem. 1992 Apr 25;267(12):8050–8055. [PubMed] [Google Scholar]
  5. Chen L., Buters J. T., Hardwick J. P., Tamura S., Penman B. W., Gonzalez F. J., Crespi C. L. Coexpression of cytochrome P4502A6 and human NADPH-P450 oxidoreductase in the baculovirus system. Drug Metab Dispos. 1997 Apr;25(4):399–405. [PubMed] [Google Scholar]
  6. Dai Y., Rashba-Step J., Cederbaum A. I. Stable expression of human cytochrome P4502E1 in HepG2 cells: characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry. 1993 Jul 13;32(27):6928–6937. doi: 10.1021/bi00078a017. [DOI] [PubMed] [Google Scholar]
  7. De Matteis F., Marks G. S. Cytochrome P450 and its interactions with the heme biosynthetic pathway. Can J Physiol Pharmacol. 1996 Jan;74(1):1–8. [PubMed] [Google Scholar]
  8. Ding S., Yao D., Burchell B., Wolf C. R., Friedberg T. High levels of recombinant CYP3A4 expression in Chinese hamster ovary cells are modulated by coexpressed human P450 reductase and hemin supplementation. Arch Biochem Biophys. 1997 Dec 15;348(2):403–410. doi: 10.1006/abbi.1997.0405. [DOI] [PubMed] [Google Scholar]
  9. Döhr O., Paine M. J., Friedberg T., Roberts G. C., Wolf C. R. Engineering of a functional human NADH-dependent cytochrome P450 system. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):81–86. doi: 10.1073/pnas.98.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eliasson E., Johansson I., Ingelman-Sundberg M. Substrate-, hormone-, and cAMP-regulated cytochrome P450 degradation. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3225–3229. doi: 10.1073/pnas.87.8.3225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forrester L. M., Henderson C. J., Glancey M. J., Back D. J., Park B. K., Ball S. E., Kitteringham N. R., McLaren A. W., Miles J. S., Skett P. Relative expression of cytochrome P450 isoenzymes in human liver and association with the metabolism of drugs and xenobiotics. Biochem J. 1992 Jan 15;281(Pt 2):359–368. doi: 10.1042/bj2810359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gonzalez F. J., Liu S. Y., Yano M. Regulation of cytochrome P450 genes: molecular mechanisms. Pharmacogenetics. 1993 Feb;3(1):51–57. doi: 10.1097/00008571-199302000-00006. [DOI] [PubMed] [Google Scholar]
  13. Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
  14. Guengerich F. P. Enzymatic oxidation of xenobiotic chemicals. Crit Rev Biochem Mol Biol. 1990;25(2):97–153. doi: 10.3109/10409239009090607. [DOI] [PubMed] [Google Scholar]
  15. Hei T. K., Liu S. X., Waldren C. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8103–8107. doi: 10.1073/pnas.95.14.8103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keyse S. M., Tyrrell R. M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A. 1989 Jan;86(1):99–103. doi: 10.1073/pnas.86.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khatsenko O. G., Gross S. S., Rifkind A. B., Vane J. R. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11147–11151. doi: 10.1073/pnas.90.23.11147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozak M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol. 1989 Nov;9(11):5073–5080. doi: 10.1128/mcb.9.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kukiełka E., Cederbaum A. I. Increased production of hydroxyl radical by pericentral microsomes compared to periportal microsomes after pyrazole induction of cytochrome P4502E1. Biochem Biophys Res Commun. 1995 Oct 13;215(2):698–705. doi: 10.1006/bbrc.1995.2520. [DOI] [PubMed] [Google Scholar]
  20. Lee T. C., Ho I. C. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol. 1995;69(7):498–504. doi: 10.1007/s002040050204. [DOI] [PubMed] [Google Scholar]
  21. Liu Y., Moënne-Loccoz P., Loehr T. M., Ortiz de Montellano P. R. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents. J Biol Chem. 1997 Mar 14;272(11):6909–6917. doi: 10.1074/jbc.272.11.6909. [DOI] [PubMed] [Google Scholar]
  22. Modi S., Paine M. J., Sutcliffe M. J., Lian L. Y., Primrose W. U., Wolf C. R., Roberts G. C. A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. Biochemistry. 1996 Apr 9;35(14):4540–4550. doi: 10.1021/bi952742o. [DOI] [PubMed] [Google Scholar]
  23. Murphy B. J., Laderoute K. R., Vreman H. J., Grant T. D., Gill N. S., Stevenson D. K., Sutherland R. M. Enhancement of heme oxygenase expression and activity in A431 squamous carcinoma multicellular tumor spheroids. Cancer Res. 1993 Jun 15;53(12):2700–2703. [PubMed] [Google Scholar]
  24. Paine M. J., Gilham D., Roberts G. C., Wolf C. R. Functional high level expression of cytochrome P450 CYP2D6 using baculoviral expression systems. Arch Biochem Biophys. 1996 Apr 1;328(1):143–150. doi: 10.1006/abbi.1996.0154. [DOI] [PubMed] [Google Scholar]
  25. Paton T. E., Renton K. W. Cytokine-mediated down-regulation of CYP1A1 in Hepa1 cells. Biochem Pharmacol. 1998 Jun 1;55(11):1791–1796. doi: 10.1016/s0006-2952(98)00028-8. [DOI] [PubMed] [Google Scholar]
  26. Porter T. D., Coon M. J. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem. 1991 Jul 25;266(21):13469–13472. [PubMed] [Google Scholar]
  27. Primiano T., Kensler T. W., Kuppusamy P., Zweier J. L., Sutter T. R. Induction of hepatic heme oxygenase-1 and ferritin in rats by cancer chemopreventive dithiolethiones. Carcinogenesis. 1996 Nov;17(11):2291–2296. doi: 10.1093/carcin/17.11.2291. [DOI] [PubMed] [Google Scholar]
  28. Pritchard M. P., Glancey M. J., Blake J. A., Gilham D. E., Burchell B., Wolf C. R., Friedberg T. Functional co-expression of CYP2D6 and human NADPH-cytochrome P450 reductase in Escherichia coli. Pharmacogenetics. 1998 Feb;8(1):33–42. doi: 10.1097/00008571-199802000-00005. [DOI] [PubMed] [Google Scholar]
  29. Wang M. H., Patten C. J., Yang G. Y., Paranawithana S. R., Tan Y., Yang C. S. Expression and coupling of human cytochrome P450 2E1 and NADPH-cytochrome P450 oxidoreductase in dual expression and co-infection systems with baculovirus in insect cells. Arch Biochem Biophys. 1996 Oct 15;334(2):380–388. doi: 10.1006/abbi.1996.0468. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES