Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jun 15;356(Pt 3):665–683. doi: 10.1042/0264-6021:3560665

What the structure of a calcium pump tells us about its mechanism.

A G Lee 1, J M East 1
PMCID: PMC1221895  PMID: 11389676

Abstract

The report of the crystal structure of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum in its Ca(2+)-bound form [Toyoshima, Nakasako and Ogawa (2000) Nature (London) 405, 647-655] provides an opportunity to interpret much kinetic and mutagenic data on the ATPase in structural terms. There are no large channels leading from the cytoplasmic surface to the pair of high-affinity Ca(2+) binding sites within the transmembrane region. One possible access pathway involves the charged residues in transmembrane alpha-helix M1, with a Ca(2+) ion passing through the first site to reach the second site. The Ca(2+)-ATPase also contains a pair of binding sites for Ca(2+) that are exposed to the lumen. In the four-site model for transport, phosphorylation of the ATPase leads to transfer of the two bound Ca(2+) ions from the cytoplasmic to the lumenal pair of sites. In the alternating four-site model for transport, phosphorylation leads to release of the bound Ca(2+) ions directly from the cytoplasmic pair of sites, linked to closure of the pair of lumenal binding sites. The lumenal pair of sites could involve a cluster of conserved acidic residues in the loop between M1 and M2. Since there is no obvious pathway from the high-affinity sites to the lumenal surface of the membrane, transport of Ca(2+) ions must involve a significant change in the packing of the transmembrane alpha-helices. The link between the phosphorylation domain and the pair of high-affinity Ca(2+) binding sites is probably provided by two small helices, P1 and P2, in the phosphorylation domain, which contact the loop between transmembrane alpha-helices M6 and M7.

Full Text

The Full Text of this article is available as a PDF (839.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed Z., Reid D. G., Watts A., Middleton D. A. A solid-state NMR study of the phospholamban transmembrane domain: local structure and interactions with Ca(2+)-ATPase. Biochim Biophys Acta. 2000 Sep 29;1468(1-2):187–198. doi: 10.1016/s0005-2736(00)00257-1. [DOI] [PubMed] [Google Scholar]
  2. Andersen J. P. Dissection of the functional domains of the sarcoplasmic reticulum Ca(2+)-ATPase by site-directed mutagenesis. Biosci Rep. 1995 Oct;15(5):243–261. doi: 10.1007/BF01788358. [DOI] [PubMed] [Google Scholar]
  3. Andersen J. P. Functional consequences of alterations to amino acids at the M5S5 boundary of the Ca(2+)-ATPase of sarcoplasmic reticulum. Mutation Tyr763-->Gly uncouples ATP hydrolysis from Ca2+ transport. J Biol Chem. 1995 Jan 13;270(2):908–914. doi: 10.1074/jbc.270.2.908. [DOI] [PubMed] [Google Scholar]
  4. Andersen J. P., Møller J. V. The role of Mg2+ and Ca2+ in the simultaneous binding of vanadate and ATP at the phosphorylation site of sarcoplasmic reticulum Ca2+-ATPase. Biochim Biophys Acta. 1985 Apr 26;815(1):9–15. doi: 10.1016/0005-2736(85)90467-5. [DOI] [PubMed] [Google Scholar]
  5. Andersen J. P., Vilsen B. Amino acids Asn796 and Thr799 of the Ca(2+)-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites. J Biol Chem. 1994 Jun 3;269(22):15931–15936. [PubMed] [Google Scholar]
  6. Andersen J. P., Vilsen B., Collins J. H., Jørgensen P. L. Localization of E1-E2 conformational transitions of sarcoplasmic reticulum Ca-ATPase by tryptic cleavage and hydrophobic labeling. J Membr Biol. 1986;93(1):85–92. doi: 10.1007/BF01871021. [DOI] [PubMed] [Google Scholar]
  7. Andersen J. P., Vilsen B. Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1992 Sep 25;267(27):19383–19387. [PubMed] [Google Scholar]
  8. Aravind L., Galperin M. Y., Koonin E. V. The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem Sci. 1998 Apr;23(4):127–129. doi: 10.1016/s0968-0004(98)01189-x. [DOI] [PubMed] [Google Scholar]
  9. Asahi M., Kimura Y., Kurzydlowski K., Tada M., MacLennan D. H. Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca(2+)-ATPase forms a functional interaction site with phospholamban. Evidence for physical interactions at other sites. J Biol Chem. 1999 Nov 12;274(46):32855–32862. doi: 10.1074/jbc.274.46.32855. [DOI] [PubMed] [Google Scholar]
  10. Baker K. J., East J. M., Lee A. G. Localization of the hinge region of the Ca(2+)-ATPase of sarcoplasmic reticulum using resonance energy transfer. Biochim Biophys Acta. 1994 Jun 1;1192(1):53–60. doi: 10.1016/0005-2736(94)90142-2. [DOI] [PubMed] [Google Scholar]
  11. Birck C., Mourey L., Gouet P., Fabry B., Schumacher J., Rousseau P., Kahn D., Samama J. P. Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure. 1999 Dec 15;7(12):1505–1515. doi: 10.1016/s0969-2126(00)88341-0. [DOI] [PubMed] [Google Scholar]
  12. Brandl C. J., Green N. M., Korczak B., MacLennan D. H. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell. 1986 Feb 28;44(4):597–607. doi: 10.1016/0092-8674(86)90269-2. [DOI] [PubMed] [Google Scholar]
  13. Cantilina T., Sagara Y., Inesi G., Jones L. R. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem. 1993 Aug 15;268(23):17018–17025. [PubMed] [Google Scholar]
  14. Champeil P., Menguy T., Soulié S., Juul B., de Gracia A. G., Rusconi F., Falson P., Denoroy L., Henao F., le Maire M. Characterization of a protease-resistant domain of the cytosolic portion of sarcoplasmic reticulum Ca2+-ATPase. Nucleotide- and metal-binding sites. J Biol Chem. 1998 Mar 20;273(12):6619–6631. doi: 10.1074/jbc.273.12.6619. [DOI] [PubMed] [Google Scholar]
  15. Champeil P., Riollet S., Orlowski S., Guillain F., Seebregts C. J., McIntosh D. B. ATP regulation of sarcoplasmic reticulum Ca2+-ATPase. Metal-free ATP and 8-bromo-ATP bind with high affinity to the catalytic site of phosphorylated ATPase and accelerate dephosphorylation. J Biol Chem. 1988 Sep 5;263(25):12288–12294. [PubMed] [Google Scholar]
  16. Champeil P., le Maire M., Andersen J. P., Guillain F., Gingold M., Lund S., Møller J. V. Kinetic characterization of the normal and detergent-perturbed reaction cycles of the sarcoplasmic reticulum calcium pump. Rate-limiting step(s) under different conditions. J Biol Chem. 1986 Dec 15;261(35):16372–16384. [PubMed] [Google Scholar]
  17. Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998 Dec 18;282(5397):2220–2226. doi: 10.1126/science.282.5397.2220. [DOI] [PubMed] [Google Scholar]
  18. Clarke D. M., Loo T. W., Inesi G., MacLennan D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature. 1989 Jun 8;339(6224):476–478. doi: 10.1038/339476a0. [DOI] [PubMed] [Google Scholar]
  19. Clarke D. M., Loo T. W., MacLennan D. H. The epitope for monoclonal antibody A20 (amino acids 870-890) is located on the luminal surface of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1990 Oct 15;265(29):17405–17408. [PubMed] [Google Scholar]
  20. Clarke D. M., Maruyama K., Loo T. W., Leberer E., Inesi G., MacLennan D. H. Functional consequences of glutamate, aspartate, glutamine, and asparagine mutations in the stalk sector of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Jul 5;264(19):11246–11251. [PubMed] [Google Scholar]
  21. Daiho T., Suzuki H., Yamasaki K., Saino T., Kanazawa T. Mutations of Arg198 in sarcoplasmic reticulum Ca2+-ATPase cause inhibition of hydrolysis of the phosphoenzyme intermediate formed from inorganic phosphate. FEBS Lett. 1999 Feb 5;444(1):54–58. doi: 10.1016/s0014-5793(99)00027-7. [DOI] [PubMed] [Google Scholar]
  22. Daiho T., Yamasaki K., Suzuki H., Saino T., Kanazawa T. Deletions or specific substitutions of a few residues in the NH(2)-terminal region (Ala(3) to Thr(9)) of sarcoplasmic reticulum Ca(2+)-ATPase cause inactivation and rapid degradation of the enzyme expressed in COS-1 cells. J Biol Chem. 1999 Aug 20;274(34):23910–23915. doi: 10.1074/jbc.274.34.23910. [DOI] [PubMed] [Google Scholar]
  23. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  24. Duggleby R. C., East M., Lee A. G. Luminal dissociation of Ca2+ from the phosphorylated Ca2+-ATPase is sequential and gated by Mg2+. Biochem J. 1999 Apr 15;339(Pt 2):351–357. [PMC free article] [PubMed] [Google Scholar]
  25. Dupont Y. Fluorescence studies of the sarcoplasmic reticulum calcium pump. Biochem Biophys Res Commun. 1976 Jul 26;71(2):544–550. doi: 10.1016/0006-291x(76)90821-4. [DOI] [PubMed] [Google Scholar]
  26. Dupont Y. Low-temperature studies of the sarcoplasmic reticulum calcium pump. Mechanisms of calcium binding. Biochim Biophys Acta. 1982 May 21;688(1):75–87. doi: 10.1016/0005-2736(82)90580-6. [DOI] [PubMed] [Google Scholar]
  27. Dupont Y. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum. Eur J Biochem. 1980 Aug;109(1):231–238. doi: 10.1111/j.1432-1033.1980.tb04788.x. [DOI] [PubMed] [Google Scholar]
  28. Dupont Y., Pougeois R., Ronjat M., Verjovsky-Almeida S. Two distinct classes of nucleotide binding sites in sarcoplasmic reticulum Ca-ATPase revealed by 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-ATP. J Biol Chem. 1985 Jun 25;260(12):7241–7249. [PubMed] [Google Scholar]
  29. Fagan M. J., Saier M. H., Jr P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol. 1994 Jan;38(1):57–99. doi: 10.1007/BF00175496. [DOI] [PubMed] [Google Scholar]
  30. Falson P., Menguy T., Corre F., Bouneau L., de Gracia A. G., Soulié S., Centeno F., Moller J. V., Champeil P., le Maire M. The cytoplasmic loop between putative transmembrane segments 6 and 7 in sarcoplasmic reticulum Ca2+-ATPase binds Ca2+ and is functionally important. J Biol Chem. 1997 Jul 11;272(28):17258–17262. doi: 10.1074/jbc.272.28.17258. [DOI] [PubMed] [Google Scholar]
  31. Forge V., Mintz E., Canet D., Guillain F. Lumenal Ca2+ dissociation from the phosphorylated Ca(2+)-ATPase of the sarcoplasmic reticulum is sequential. J Biol Chem. 1995 Aug 4;270(31):18271–18276. doi: 10.1074/jbc.270.31.18271. [DOI] [PubMed] [Google Scholar]
  32. Froud R. J., Earl C. R., East J. M., Lee A. G. Effects of lipid fatty acyl chain structure on the activity of the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1986 Aug 21;860(2):354–360. doi: 10.1016/0005-2736(86)90532-8. [DOI] [PubMed] [Google Scholar]
  33. Froud R. J., Lee A. G. Conformational transitions in the Ca2+ + Mg2+-activated ATPase and the binding of Ca2+ ions. Biochem J. 1986 Jul 1;237(1):197–206. doi: 10.1042/bj2370197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Fujimori T., Jencks W. P. Binding of two Sr2+ ions changes the chemical specificities for phosphorylation of the sarcoplasmic reticulum calcium ATPase through a stepwise mechanism. J Biol Chem. 1992 Sep 15;267(26):18475–18487. [PubMed] [Google Scholar]
  35. Garrahan P. J., Rega A. F., Alonso G. L. The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum. Biochim Biophys Acta. 1976 Sep 21;448(1):121–132. doi: 10.1016/0005-2736(76)90081-x. [DOI] [PubMed] [Google Scholar]
  36. Gould G. W., East J. M., Froud R. J., McWhirter J. M., Stefanova H. I., Lee A. G. A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochem J. 1986 Jul 1;237(1):217–227. doi: 10.1042/bj2370217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gutierrez-Merino C., Munkonge F., Mata A. M., East J. M., Levinson B. L., Napier R. M., Lee A. G. The position of the ATP binding site on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta. 1987 Feb 26;897(2):207–216. doi: 10.1016/0005-2736(87)90417-2. [DOI] [PubMed] [Google Scholar]
  38. Hanel A. M., Jencks W. P. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme. Biochemistry. 1991 Nov 26;30(47):11320–11330. doi: 10.1021/bi00111a019. [DOI] [PubMed] [Google Scholar]
  39. Henderson I. M., Khan Y. M., East J. M., Lee A. G. Binding of Ca2+ to the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum: equilibrium studies. Biochem J. 1994 Feb 1;297(Pt 3):615–624. doi: 10.1042/bj2970615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Henderson I. M., Starling A. P., Wictome M., East J. M., Lee A. G. Binding of Ca2+ to the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum: kinetic studies. Biochem J. 1994 Feb 1;297(Pt 3):625–636. doi: 10.1042/bj2970625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hill T. L., Inesi G. Equilibrium cooperative binding of calcium and protons by sarcoplasmic reticulum ATPase. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3978–3982. doi: 10.1073/pnas.79.13.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hisano T., Hata Y., Fujii T., Liu J. Q., Kurihara T., Esaki N., Soda K. Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp. YL. An alpha/beta hydrolase structure that is different from the alpha/beta hydrolase fold. J Biol Chem. 1996 Aug 23;271(34):20322–20330. doi: 10.1074/jbc.271.34.20322. [DOI] [PubMed] [Google Scholar]
  43. Hughes G., East J. M., Lee A. G. The hydrophilic domain of phospholamban inhibits the Ca2+ transport step of the Ca(2+)-ATPase. Biochem J. 1994 Oct 15;303(Pt 2):511–516. doi: 10.1042/bj3030511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hughes G., Starling A. P., Sharma R. P., East J. M., Lee A. G. An investigation of the mechanism of inhibition of the Ca(2+)-ATPase by phospholamban. Biochem J. 1996 Sep 15;318(Pt 3):973–979. doi: 10.1042/bj3180973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Inesi G. Sequential mechanism of calcium binding and translocation in sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem. 1987 Dec 5;262(34):16338–16342. [PubMed] [Google Scholar]
  46. Iverson T. M., Luna-Chavez C., Cecchini G., Rees D. C. Structure of the Escherichia coli fumarate reductase respiratory complex. Science. 1999 Jun 18;284(5422):1961–1966. doi: 10.1126/science.284.5422.1961. [DOI] [PubMed] [Google Scholar]
  47. Jencks W. P. How does a calcium pump pump calcium? J Biol Chem. 1989 Nov 15;264(32):18855–18858. [PubMed] [Google Scholar]
  48. Jencks W. P., Yang T., Peisach D., Myung J. Calcium ATPase of sarcoplasmic reticulum has four binding sites for calcium. Biochemistry. 1993 Jul 13;32(27):7030–7034. doi: 10.1021/bi00078a031. [DOI] [PubMed] [Google Scholar]
  49. Kargacin M. E., Ali Z., Kargacin G. Anti-phospholamban and protein kinase A alter the Ca2+ sensitivity and maximum velocity of Ca2+ uptake by the cardiac sarcoplasmic reticulum. Biochem J. 1998 Apr 1;331(Pt 1):245–249. doi: 10.1042/bj3310245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Khan Y. M., East J. M., Lee A. G. Effects of pH on phosphorylation of the Ca2+-ATPase of sarcoplasmic reticulum by inorganic phosphate. Biochem J. 1997 Feb 1;321(Pt 3):671–676. doi: 10.1042/bj3210671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Khan Y. M., Wictome M., East J. M., Lee A. G. Interactions of dihydroxybenzenes with the Ca(2+)-ATPase: separate binding sites for dihydroxybenzenes and sesquiterpene lactones. Biochemistry. 1995 Nov 7;34(44):14385–14393. doi: 10.1021/bi00044a015. [DOI] [PubMed] [Google Scholar]
  52. Lacapere J. J., Guillain F. The reaction mechanism of Ca(2+)-ATPase of sarcoplasmic reticulum. Direct measurement of the Mg.ATP dissociation constant gives similar values in the presence or absence of calcium. Eur J Biochem. 1993 Jan 15;211(1-2):117–126. doi: 10.1111/j.1432-1033.1993.tb19877.x. [DOI] [PubMed] [Google Scholar]
  53. Lacapère J. J., Gingold M. P., Champeil P., Guillain F. Sarcoplasmic reticulum ATPase phosphorylation from inorganic phosphate in the absence of a calcium gradient. Steady state and kinetic fluorescence studies. J Biol Chem. 1981 Mar 10;256(5):2302–2306. [PubMed] [Google Scholar]
  54. Lee A. G., Baker K., Khan Y. M., East J. M. Effects of K+ on the binding of Ca2+ to the Ca(2+)-ATPase of sarcoplasmic reticulum. Biochem J. 1995 Jan 1;305(Pt 1):225–231. doi: 10.1042/bj3050225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Lewis B. A., Engelman D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983 May 15;166(2):211–217. doi: 10.1016/s0022-2836(83)80007-2. [DOI] [PubMed] [Google Scholar]
  56. Llopis J., Chow S. B., Kass G. E., Gahm A., Orrenius S. Comparison between the effects of the microsomal Ca(2+)-translocase inhibitors thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone on cellular calcium fluxes. Biochem J. 1991 Jul 15;277(Pt 2):553–556. doi: 10.1042/bj2770553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Lockyer P. J., Puente E., Windass J., Earley F., East J. M., Lee A. G. Cloning and expression of an insect Ca(2+)-ATPase from Heliothis virescens. Biochim Biophys Acta. 1998 Feb 2;1369(1):14–18. doi: 10.1016/s0005-2736(97)00247-2. [DOI] [PubMed] [Google Scholar]
  58. Ma H., Zhong L., Inesi G., Fortea I., Soler F., Fernandez-Belda F. Overlapping effects of S3 stalk segment mutations on the affinity of Ca2+-ATPase (SERCA) for thapsigargin and cyclopiazonic acid. Biochemistry. 1999 Nov 23;38(47):15522–15527. doi: 10.1021/bi991523q. [DOI] [PubMed] [Google Scholar]
  59. MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
  60. Martin D. W., Tanford C. Phosphorylation of calcium adenosinetriphosphatase by inorganic phosphate: van't Hoff analysis of enthalpy changes. Biochemistry. 1981 Aug 4;20(16):4597–4602. doi: 10.1021/bi00519a013. [DOI] [PubMed] [Google Scholar]
  61. Maruyama K., Clarke D. M., Fujii J., Inesi G., Loo T. W., MacLennan D. H. Functional consequences of alterations to amino acids located in the catalytic center (isoleucine 348 to threonine 357) and nucleotide-binding domain of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Aug 5;264(22):13038–13042. [PubMed] [Google Scholar]
  62. Mata A. M., Matthews I., Tunwell R. E., Sharma R. P., Lee A. G., East J. M. Definition of surface-exposed and trans-membranous regions of the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum using anti-peptide antibodies. Biochem J. 1992 Sep 1;286(Pt 2):567–580. doi: 10.1042/bj2860567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Matthews I., Colyer J., Mata A. M., Green N. M., Sharma R. P., Lee A. G., East J. M. Evidence for the cytoplasmic location of the N- and C-terminal segments of sarcoplasmic reticulum (Ca2+-Mg2+)-ATPase. Biochem Biophys Res Commun. 1989 Jun 15;161(2):683–688. doi: 10.1016/0006-291x(89)92653-3. [DOI] [PubMed] [Google Scholar]
  64. Matthews I., Sharma R. P., Lee A. G., East J. M. Transmembranous organization of (Ca2(+)-Mg2+)-ATPase from sarcoplasmic reticulum. Evidence for lumenal location of residues 877-888. J Biol Chem. 1990 Nov 5;265(31):18737–18740. [PubMed] [Google Scholar]
  65. McIntosh D. B. Glutaraldehyde cross-links Lys-492 and Arg-678 at the active site of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1992 Nov 5;267(31):22328–22335. [PubMed] [Google Scholar]
  66. McIntosh D. B., Ross D. C., Champeil P., Guillain F. Crosslinking the active site of sarcoplasmic reticulum Ca(2+)-ATPase completely blocks Ca2+ release to the vesicle lumen. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6437–6441. doi: 10.1073/pnas.88.15.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. McIntosh D. B., Woolley D. G. Catalysis of an ATP analogue untethered and tethered to lysine 492 of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1994 Aug 26;269(34):21587–21595. [PubMed] [Google Scholar]
  68. McIntosh D. B., Woolley D. G., MacLennan D. H., Vilsen B., Andersen J. P. Interaction of nucleotides with Asp(351) and the conserved phosphorylation loop of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1999 Sep 3;274(36):25227–25236. doi: 10.1074/jbc.274.36.25227. [DOI] [PubMed] [Google Scholar]
  69. McPhalen C. A., Strynadka N. C., James M. N. Calcium-binding sites in proteins: a structural perspective. Adv Protein Chem. 1991;42:77–144. doi: 10.1016/s0065-3233(08)60535-5. [DOI] [PubMed] [Google Scholar]
  70. Menguy T., Corre F., Bouneau L., Deschamps S., Møller J. V., Champeil P., le Maire M., Falson P. The cytoplasmic loop located between transmembrane segments 6 and 7 controls activation by Ca2+ of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 1998 Aug 7;273(32):20134–20143. doi: 10.1074/jbc.273.32.20134. [DOI] [PubMed] [Google Scholar]
  71. Mitchinson C., Wilderspin A. F., Trinnaman B. J., Green N. M. Identification of a labelled peptide after stoicheiometric reaction of fluorescein isothiocyanate with the Ca2+ -dependent adenosine triphosphatase of sarcoplasmic reticulum. FEBS Lett. 1982 Sep 6;146(1):87–92. doi: 10.1016/0014-5793(82)80710-2. [DOI] [PubMed] [Google Scholar]
  72. Moutin M. J., Dupont Y. Interaction of potassium and magnesium with the high affinity calcium-binding sites of the sarcoplasmic reticulum calcium-ATPase. J Biol Chem. 1991 Mar 25;266(9):5580–5586. [PubMed] [Google Scholar]
  73. Myung J., Jencks W. P. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent. Biochemistry. 1994 Jul 26;33(29):8775–8785. doi: 10.1021/bi00195a020. [DOI] [PubMed] [Google Scholar]
  74. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  75. Ogawa H., Stokes D. L., Sasabe H., Toyoshima C. Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution. Biophys J. 1998 Jul;75(1):41–52. doi: 10.1016/S0006-3495(98)77493-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ogurusu T., Wakabayashi S., Shigekawa M. Activation of sarcoplasmic reticulum Ca(2+)-ATPase by Mn2+: a Mn2+ binding study. J Biochem. 1991 Mar;109(3):472–476. doi: 10.1093/oxfordjournals.jbchem.a123406. [DOI] [PubMed] [Google Scholar]
  77. Orlowski S., Champeil P. Kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum ATPase. Biochemistry. 1991 Jan 15;30(2):352–361. doi: 10.1021/bi00216a007. [DOI] [PubMed] [Google Scholar]
  78. Orlowski S., Champeil P. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen. Biochemistry. 1991 Nov 26;30(47):11331–11342. doi: 10.1021/bi00111a020. [DOI] [PubMed] [Google Scholar]
  79. Palmero I., Sastre L. Complementary DNA cloning of a protein highly homologous to mammalian sarcoplasmic reticulum Ca-ATPase from the crustacean Artemia. J Mol Biol. 1989 Dec 20;210(4):737–748. doi: 10.1016/0022-2836(89)90106-x. [DOI] [PubMed] [Google Scholar]
  80. Petithory J. R., Jencks W. P. Binding of Ca2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum. Biochemistry. 1988 Nov 15;27(23):8626–8635. doi: 10.1021/bi00423a018. [DOI] [PubMed] [Google Scholar]
  81. Petithory J. R., Jencks W. P. Phosphorylation of the calcium adenosinetriphosphatase of sarcoplasmic reticulum: rate-limiting conformational change followed by rapid phosphoryl transfer. Biochemistry. 1986 Aug 12;25(16):4493–4497. doi: 10.1021/bi00364a006. [DOI] [PubMed] [Google Scholar]
  82. Pickart C. M., Jencks W. P. Energetics of the calcium-transporting ATPase. J Biol Chem. 1984 Feb 10;259(3):1629–1643. [PubMed] [Google Scholar]
  83. Pickart C. M., Jencks W. P. Slow dissociation of ATP from the calcium ATPase. J Biol Chem. 1982 May 25;257(10):5319–5322. [PubMed] [Google Scholar]
  84. Reinstein J., Jencks W. P. The binding of ATP and Mg2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum follows a random mechanism. Biochemistry. 1993 Jul 6;32(26):6632–6642. doi: 10.1021/bi00077a016. [DOI] [PubMed] [Google Scholar]
  85. Rice W. J., MacLennan D. H. Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a). J Biol Chem. 1996 Dec 6;271(49):31412–31419. doi: 10.1074/jbc.271.49.31412. [DOI] [PubMed] [Google Scholar]
  86. Sasaki T., Inui M., Kimura Y., Kuzuya T., Tada M. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem. 1992 Jan 25;267(3):1674–1679. [PubMed] [Google Scholar]
  87. Silva J. L., Verjovski-Almeida S. Self-association and modification of calcium binding in solubilized sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1983 Feb 1;22(3):707–716. doi: 10.1021/bi00272a028. [DOI] [PubMed] [Google Scholar]
  88. Simmerman H. K., Jones L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. 1998 Oct;78(4):921–947. doi: 10.1152/physrev.1998.78.4.921. [DOI] [PubMed] [Google Scholar]
  89. Skerjanc I. S., Toyofuku T., Richardson C., MacLennan D. H. Mutation of glutamate 309 to glutamine alters one Ca(2+)-binding site in the Ca(2+)-ATPase of sarcoplasmic reticulum expressed in Sf9 cells. J Biol Chem. 1993 Jul 25;268(21):15944–15950. [PubMed] [Google Scholar]
  90. Sorensen T. L., Andersen J. P. Importance of stalk segment S5 for intramolecular communication in the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem. 2000 Sep 15;275(37):28954–28961. doi: 10.1074/jbc.M004072200. [DOI] [PubMed] [Google Scholar]
  91. Sorensen T. L., Dupont Y., Vilsen B., Andersen J. P. Fast kinetic analysis of conformational changes in mutants of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 2000 Feb 25;275(8):5400–5408. doi: 10.1074/jbc.275.8.5400. [DOI] [PubMed] [Google Scholar]
  92. Stahl N., Jencks W. P. Reactions of the sarcoplasmic reticulum calcium adenosinetriphosphatase with adenosine 5'-triphosphate and Ca2+ that are not satisfactorily described by an E1-E2 model. Biochemistry. 1987 Dec 1;26(24):7654–7667. doi: 10.1021/bi00398a019. [DOI] [PubMed] [Google Scholar]
  93. Starling A. P., Khan Y. M., East J. M., Lee A. G. Characterization of the single Ca(2+)-binding site on the Ca(2+)-ATPase reconstituted with short- or long-chain phosphatidylcholines. Biochem J. 1994 Dec 1;304(Pt 2):569–575. doi: 10.1042/bj3040569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Stefanova H. I., East J. M., Gore M. G., Lee A. G. Labeling the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum with 4-(bromomethyl)-6,7-dimethoxycoumarin: detection of conformational changes. Biochemistry. 1992 Jul 7;31(26):6023–6031. doi: 10.1021/bi00141a010. [DOI] [PubMed] [Google Scholar]
  95. Stokes D. L., Green N. M. Modeling a dehalogenase fold into the 8-A density map for Ca(2+)-ATPase defines a new domain structure. Biophys J. 2000 Apr;78(4):1765–1776. doi: 10.1016/s0006-3495(00)76727-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Stokes D. L., Lacapère J. J. Conformation of Ca(2+)-ATPase in two crystal forms. Effects of Ca2+, thapsigargin, adenosine 5'-(beta, gamma-methylene)triphosphate), and chromium(III)-ATP on crystallization. J Biol Chem. 1994 Apr 15;269(15):11606–11613. [PubMed] [Google Scholar]
  97. Stokes D. L., Wagenknecht T. Calcium transport across the sarcoplasmic reticulum: structure and function of Ca2+-ATPase and the ryanodine receptor. Eur J Biochem. 2000 Sep;267(17):5274–5279. doi: 10.1046/j.1432-1327.2000.01569.x. [DOI] [PubMed] [Google Scholar]
  98. Suko J., Plank B., Preis P., Kolassa N., Hellmann G., Conca W. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence. Eur J Biochem. 1981 Oct;119(2):225–236. doi: 10.1111/j.1432-1033.1981.tb05598.x. [DOI] [PubMed] [Google Scholar]
  99. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca(2+)-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J Biol Chem. 1994 Sep 16;269(37):22929–22932. [PubMed] [Google Scholar]
  101. Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
  102. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
  103. Verma A. K., Filoteo A. G., Stanford D. R., Wieben E. D., Penniston J. T., Strehler E. E., Fischer R., Heim R., Vogel G., Mathews S. Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem. 1988 Oct 5;263(28):14152–14159. [PubMed] [Google Scholar]
  104. Vilsen B., Andersen J. P., Clarke D. M., MacLennan D. H. Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Dec 15;264(35):21024–21030. [PubMed] [Google Scholar]
  105. Vilsen B., Andersen J. P. CrATP-induced Ca2+ occlusion in mutants of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1992 Dec 25;267(36):25739–25743. [PubMed] [Google Scholar]
  106. Vilsen B., Andersen J. P. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Biochemistry. 1998 Aug 4;37(31):10961–10971. doi: 10.1021/bi9802925. [DOI] [PubMed] [Google Scholar]
  107. Webb R. J., Khan Y. M., East J. M., Lee A. G. The importance of carboxyl groups on the lumenal side of the membrane for the function of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 2000 Jan 14;275(2):977–982. doi: 10.1074/jbc.275.2.977. [DOI] [PubMed] [Google Scholar]
  108. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  109. Wictome M., Holub M., East J. M., Lee A. G. The importance of the hydroxyl moieties for inhibition of the Ca(2+)-ATPase by trilobolide and 2,5-di(tert-butyl)-1,4-benzohydroquinone. Biochem Biophys Res Commun. 1994 Mar 15;199(2):916–921. doi: 10.1006/bbrc.1994.1316. [DOI] [PubMed] [Google Scholar]
  110. Wictome M., Khan Y. M., East J. M., Lee A. G. Binding of sesquiterpene lactone inhibitors to the Ca(2+)-ATPase. Biochem J. 1995 Sep 15;310(Pt 3):859–868. doi: 10.1042/bj3100859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Wictome M., Starling A. P., Sharma R. P., East J. M., Lee A. G. Inhibition of the Ca(2+)-ATPase by sesquiterpene lactones. Biochem Soc Trans. 1993 Nov;21(4):348S–348S. doi: 10.1042/bst021348s. [DOI] [PubMed] [Google Scholar]
  112. Wimmers L. E., Ewing N. N., Bennett A. B. Higher plant Ca(2+)-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9205–9209. doi: 10.1073/pnas.89.19.9205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Yamamoto H., Imamura Y., Tagaya M., Fukui T., Kawakita M. Ca2(+)-dependent conformational change of the ATP-binding site of Ca2(+)-transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosine triphosphopyridoxal. J Biochem. 1989 Dec;106(6):1121–1125. doi: 10.1093/oxfordjournals.jbchem.a122976. [DOI] [PubMed] [Google Scholar]
  114. Yamamoto H., Tagaya M., Fukui T., Kawakita M. Affinity labeling of the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum by adenosine triphosphopyridoxal: identification of the reactive lysyl residue. J Biochem. 1988 Mar;103(3):452–457. doi: 10.1093/oxfordjournals.jbchem.a122291. [DOI] [PubMed] [Google Scholar]
  115. Yonekura K., Stokes D. L., Sasabe H., Toyoshima C. The ATP-binding site of Ca(2+)-ATPase revealed by electron image analysis. Biophys J. 1997 Mar;72(3):997–1005. doi: 10.1016/S0006-3495(97)78752-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Yu M., Lin J., Khadeer M., Yeh Y., Inesi G., Hussain A. Effects of various amino acid 256 mutations on sarcoplasmic/endoplasmic reticulum Ca2+ ATPase function and their role in the cellular adaptive response to thapsigargin. Arch Biochem Biophys. 1999 Feb 15;362(2):225–232. doi: 10.1006/abbi.1998.1049. [DOI] [PubMed] [Google Scholar]
  117. Zhang Z., Huang L., Shulmeister V. M., Chi Y. I., Kim K. K., Hung L. W., Crofts A. R., Berry E. A., Kim S. H. Electron transfer by domain movement in cytochrome bc1. Nature. 1998 Apr 16;392(6677):677–684. doi: 10.1038/33612. [DOI] [PubMed] [Google Scholar]
  118. Zhang Z., Lewis D., Strock C., Inesi G., Nakasako M., Nomura H., Toyoshima C. Detailed characterization of the cooperative mechanism of Ca(2+) binding and catalytic activation in the Ca(2+) transport (SERCA) ATPase. Biochemistry. 2000 Aug 1;39(30):8758–8767. doi: 10.1021/bi000185m. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES