Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Jul 15;357(Pt 2):465–471. doi: 10.1042/0264-6021:3570465

FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins.

A Ideno 1, T Yoshida 1, T Iida 1, M Furutani 1, T Maruyama 1
PMCID: PMC1221973  PMID: 11439096

Abstract

The FK506 (tacrolimus)-binding protein (FKBP) type peptidyl-prolyl cis-trans isomerase (PPIase) in the hyperthermophilic archaeum Thermococcus sp. KS-1 was shown to be induced by temperature downshift to growth temperatures lower than the optimum. This PPIase (TcFKBP18) showed chaperone-like protein refolding activity in addition to PPIase activity in vitro. It refolded unfolded citrate synthase (CS) and increased the yield of the refolded protein. At a molar ratio of 15:1 ([TcFKBP18] to [CS]) in the refolding mixture, the recovered yield of folded CS was maximal at 62%, whereas that of spontaneous refolding was 11%. Increasing FKBP above a 15:1 ratio decreased the final yield, whereas the aggregation of unfolded CS was suppressed. A cross-linking analysis showed the formation of a complex between TcFKBP18 and unfolded CS (1:1 complex) at molar ratios of 3:1 to 15:1. However, molar ratios of 15:1 or 60:1 induced the binding of multiple FKBP molecules to an unfolded CS molecule (multimeric complex). Disrupting hydrophobic interaction by adding ethylene glycol at a molar ratio of 60:1 ([TcFKBP18] to [CS]) suppressed the formation of this multimeric complex, simultaneously enhancing CS refolding. FK506 also suppressed the formation of the multimeric complex while increasing the chaperone-like activity. These results suggest that the hydrophobic region of TcFKBP18, probably the FK506-binding pocket, was important for the interaction with unfolded proteins. No cross-linked product was detected between TcFKBP18 and native dimeric CS. TcFKBP18 probably traps the unfolded protein, then refolds and releases it in a native form. This FKBP might be important at growth temperatures lower than the optimum in Thermococcus sp. KS-1 cells.

Full Text

The Full Text of this article is available as a PDF (196.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bose S., Weikl T., Bügl H., Buchner J. Chaperone function of Hsp90-associated proteins. Science. 1996 Dec 6;274(5293):1715–1717. doi: 10.1126/science.274.5293.1715. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  4. Fischer G., Wittmann-Liebold B., Lang K., Kiefhaber T., Schmid F. X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature. 1989 Feb 2;337(6206):476–478. doi: 10.1038/337476a0. [DOI] [PubMed] [Google Scholar]
  5. Furutani M., Ideno A., Iida T., Maruyama T. FK506 binding protein from a thermophilic archaeon, Methanococcus thermolithotrophicus, has chaperone-like activity in vitro. Biochemistry. 2000 Jan 18;39(2):453–462. doi: 10.1021/bi9911076. [DOI] [PubMed] [Google Scholar]
  6. Furutani M., Iida T., Yamano S., Kamino K., Maruyama T. Biochemical and genetic characterization of an FK506-sensitive peptidyl prolyl cis-trans isomerase from a thermophilic archaeon, Methanococcus thermolithotrophicus. J Bacteriol. 1998 Jan;180(2):388–394. doi: 10.1128/jb.180.2.388-394.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furutani M., Iida T., Yoshida T., Maruyama T. Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J Biol Chem. 1998 Oct 23;273(43):28399–28407. doi: 10.1074/jbc.273.43.28399. [DOI] [PubMed] [Google Scholar]
  8. Harrison R. K., Stein R. L. Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. Biochemistry. 1990 Apr 24;29(16):3813–3816. doi: 10.1021/bi00468a001. [DOI] [PubMed] [Google Scholar]
  9. Hesterkamp T., Hauser S., Lütcke H., Bukau B. Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4437–4441. doi: 10.1073/pnas.93.9.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoaki T., Nishijima M., Kato M., Adachi K., Mizobuchi S., Hanzawa N., Maruyama T. Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl Environ Microbiol. 1994 Aug;60(8):2898–2904. doi: 10.1128/aem.60.8.2898-2904.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang G. C., Li Z. Y., Zhou J. M., Fischer G. Assisted folding of D-glyceraldehyde-3-phosphate dehydrogenase by trigger factor. Protein Sci. 2000 Jun;9(6):1254–1261. doi: 10.1110/ps.9.6.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ideno A., Yoshida T., Furutani M., Maruyama T. The 28.3 kDa FK506 binding protein from a thermophilic archaeum, Methanobacterium thermoautotrophicum, protects the denaturation of proteins in vitro. Eur J Biochem. 2000 Jun;267(11):3139–3149. doi: 10.1046/j.1432-1327.2000.01332.x. [DOI] [PubMed] [Google Scholar]
  13. Iida T., Furutani M., Nishida F., Maruyama T. FKBP-type peptidyl-prolyl cis-trans isomerase from a sulfur-dependent hyperthermophilic archaeon, Thermococcus sp. KS-1. Gene. 1998 Nov 19;222(2):249–255. doi: 10.1016/s0378-1119(98)00484-3. [DOI] [PubMed] [Google Scholar]
  14. Iida T., Iwabuchi T., Ideno A., Suzuki S., Maruyama T. FK506-binding protein-type peptidyl-prolyl cis-trans isomerase from a halophilic archaeum, Halobacterium cutirubrum. Gene. 2000 Oct 3;256(1-2):319–326. doi: 10.1016/s0378-1119(00)00378-4. [DOI] [PubMed] [Google Scholar]
  15. Kandror O., Goldberg A. L. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4978–4981. doi: 10.1073/pnas.94.10.4978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kandror O., Sherman M., Moerschell R., Goldberg A. L. Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. J Biol Chem. 1997 Jan 17;272(3):1730–1734. doi: 10.1074/jbc.272.3.1730. [DOI] [PubMed] [Google Scholar]
  17. Kawarabayasi Y., Hino Y., Horikawa H., Yamazaki S., Haikawa Y., Jin-no K., Takahashi M., Sekine M., Baba S., Ankai A. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 1999 Apr 30;6(2):83-101, 145-52. doi: 10.1093/dnares/6.2.83. [DOI] [PubMed] [Google Scholar]
  18. Kawarabayasi Y., Sawada M., Horikawa H., Haikawa Y., Hino Y., Yamamoto S., Sekine M., Baba S., Kosugi H., Hosoyama A. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 1998 Apr 30;5(2):55–76. doi: 10.1093/dnares/5.2.55. [DOI] [PubMed] [Google Scholar]
  19. Kay J. E. Structure-function relationships in the FK506-binding protein (FKBP) family of peptidylprolyl cis-trans isomerases. Biochem J. 1996 Mar 1;314(Pt 2):361–385. [PMC free article] [PubMed] [Google Scholar]
  20. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  21. Lang K., Schmid F. X., Fischer G. Catalysis of protein folding by prolyl isomerase. Nature. 1987 Sep 17;329(6136):268–270. doi: 10.1038/329268a0. [DOI] [PubMed] [Google Scholar]
  22. Maleszka R., Lupas A., Hanes S. D., Miklos G. L. The dodo gene family encodes a novel protein involved in signal transduction and protein folding. Gene. 1997 Dec 12;203(2):89–93. doi: 10.1016/s0378-1119(97)00522-2. [DOI] [PubMed] [Google Scholar]
  23. Sanchez E. R. Hsp56: a novel heat shock protein associated with untransformed steroid receptor complexes. J Biol Chem. 1990 Dec 25;265(36):22067–22070. [PubMed] [Google Scholar]
  24. Scholz C., Stoller G., Zarnt T., Fischer G., Schmid F. X. Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J. 1997 Jan 2;16(1):54–58. doi: 10.1093/emboj/16.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Song J., Quan H., Wang C. Dependence of the anti-chaperone activity of protein disulphide isomerase on its chaperone activity. Biochem J. 1997 Dec 15;328(Pt 3):841–846. doi: 10.1042/bj3280841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stoller G., Rücknagel K. P., Nierhaus K. H., Schmid F. X., Fischer G., Rahfeld J. U. A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J. 1995 Oct 16;14(20):4939–4948. doi: 10.1002/j.1460-2075.1995.tb00177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takahashi N., Hayano T., Suzuki M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature. 1989 Feb 2;337(6206):473–475. doi: 10.1038/337473a0. [DOI] [PubMed] [Google Scholar]
  28. Valent Q. A., Kendall D. A., High S., Kusters R., Oudega B., Luirink J. Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J. 1995 Nov 15;14(22):5494–5505. doi: 10.1002/j.1460-2075.1995.tb00236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Duyne G. D., Standaert R. F., Karplus P. A., Schreiber S. L., Clardy J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol. 1993 Jan 5;229(1):105–124. doi: 10.1006/jmbi.1993.1012. [DOI] [PubMed] [Google Scholar]
  30. WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]
  31. Wang C. C., Tsou C. L. Enzymes as chaperones and chaperones as enzymes. FEBS Lett. 1998 Apr 3;425(3):382–384. doi: 10.1016/s0014-5793(98)00272-5. [DOI] [PubMed] [Google Scholar]
  32. Yoshida T., Ideno A., Hiyamuta S., Yohda M., Maruyama T. Natural chaperonin of the hyperthermophilic archaeum, Thermococcus strain KS-1: a hetero-oligomeric chaperonin with variable subunit composition. Mol Microbiol. 2001 Mar;39(5):1406–1413. doi: 10.1111/j.1365-2958.2001.02334.x. [DOI] [PubMed] [Google Scholar]
  33. Yoshida T., Yohda M., Iida T., Maruyama T., Taguchi H., Yazaki K., Ohta T., Odaka M., Endo I., Kagawa Y. Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J Mol Biol. 1997 Oct 31;273(3):635–645. doi: 10.1006/jmbi.1997.1337. [DOI] [PubMed] [Google Scholar]
  34. Zarnt T., Tradler T., Stoller G., Scholz C., Schmid F. X., Fischer G. Modular structure of the trigger factor required for high activity in protein folding. J Mol Biol. 1997 Sep 5;271(5):827–837. doi: 10.1006/jmbi.1997.1206. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES