Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Aug 1;357(Pt 3):779–785. doi: 10.1042/0264-6021:3570779

Continuous affinity-based selection: rapid screening and simultaneous amplification of bacterial surface-display libraries.

D Patel 1, S Vitovski 1, H J Senior 1, M D Edge 1, R C Hockney 1, M J Dempsey 1, J R Sayers 1
PMCID: PMC1222007  PMID: 11463348

Abstract

A new method for continuous biopanning has been developed. We have combined the power of affinity chromatography with the fecundity of bacteria in a unique process that mimics clonal selection. Mixed populations of bacteria were applied to a fermenter containing the immobilized ligand of interest. Bacteria retained in this affinity fermenter were allowed to grow under continuous washout conditions, such that weakly bound organisms were selectively lost. Those initially rare founder bacteria expressing a receptor for the immobilized ligand (R+ve) were thus enriched and amplified simultaneously. From an initial culture containing 1 x 10(10) R-ve cells spiked with fewer than 30 R+ve bacteria (<1 in 10(8)), final ratios of R+ve/R-ve bacteria as high as 1 in 12 were observed, representing an enrichment factor of 55 million-fold. This technology has considerable potential for rapid screening of bacterial surface-display libraries and in facilitating directed-evolution studies.

Full Text

The Full Text of this article is available as a PDF (185.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Better M., Chang C. P., Robinson R. R., Horwitz A. H. Escherichia coli secretion of an active chimeric antibody fragment. Science. 1988 May 20;240(4855):1041–1043. doi: 10.1126/science.3285471. [DOI] [PubMed] [Google Scholar]
  2. Bouges-Bocquet B., Villarroya H., Hofnung M. Linker mutagenesis in the gene of an outer membrane protein of Escherichia coli, lamB. J Cell Biochem. 1984;24(3):217–228. doi: 10.1002/jcb.240240304. [DOI] [PubMed] [Google Scholar]
  3. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clackson T., Hoogenboom H. R., Griffiths A. D., Winter G. Making antibody fragments using phage display libraries. Nature. 1991 Aug 15;352(6336):624–628. doi: 10.1038/352624a0. [DOI] [PubMed] [Google Scholar]
  5. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dumas F., Koebnik R., Winterhalter M., Van Gelder P. Sugar transport through maltoporin of Escherichia coli. Role of polar tracks. J Biol Chem. 2000 Jun 30;275(26):19747–19751. doi: 10.1074/jbc.M000268200. [DOI] [PubMed] [Google Scholar]
  7. Ferenci T., Lee K. S. Directed evolution of the lambda receptor of Escherichia coli through affinity chromatographic selection. J Mol Biol. 1982 Sep 25;160(3):431–444. doi: 10.1016/0022-2836(82)90306-0. [DOI] [PubMed] [Google Scholar]
  8. Ferenci T., Lee K. S. Isolation, by affinity chromatography, of mutant escherichia coli cells with novel regulation of lamB expression. J Bacteriol. 1983 May;154(2):984–987. doi: 10.1128/jb.154.2.984-987.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferenci T., Stretton S. Cysteine-22 and cysteine-38 are not essential for the functions of maltoporin (LamB protein). FEMS Microbiol Lett. 1989 Oct 15;52(3):335–339. doi: 10.1016/0378-1097(89)90221-8. [DOI] [PubMed] [Google Scholar]
  10. Francisco J. A., Campbell R., Iverson B. L., Georgiou G. Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10444–10448. doi: 10.1073/pnas.90.22.10444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Georgiou G., Stathopoulos C., Daugherty P. S., Nayak A. R., Iverson B. L., Curtiss R., 3rd Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol. 1997 Jan;15(1):29–34. doi: 10.1038/nbt0197-29. [DOI] [PubMed] [Google Scholar]
  12. Griffiths A. D., Williams S. C., Hartley O., Tomlinson I. M., Waterhouse P., Crosby W. L., Kontermann R. E., Jones P. T., Low N. M., Allison T. J. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 1994 Jul 15;13(14):3245–3260. doi: 10.1002/j.1460-2075.1994.tb06626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gunneriusson E., Samuelson P., Uhlen M., Nygren P. A., Stähl S. Surface display of a functional single-chain Fv antibody on staphylococci. J Bacteriol. 1996 Mar;178(5):1341–1346. doi: 10.1128/jb.178.5.1341-1346.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jung H. C., Lebeault J. M., Pan J. G. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol. 1998 Jun;16(6):576–580. doi: 10.1038/nbt0698-576. [DOI] [PubMed] [Google Scholar]
  15. Klebba P. E., Hofnung M., Charbit A. A model of maltodextrin transport through the sugar-specific porin, LamB, based on deletion analysis. EMBO J. 1994 Oct 3;13(19):4670–4675. doi: 10.1002/j.1460-2075.1994.tb06790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  17. Lattemann C. T., Maurer J., Gerland E., Meyer T. F. Autodisplay: functional display of active beta-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. J Bacteriol. 2000 Jul;182(13):3726–3733. doi: 10.1128/jb.182.13.3726-3733.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LeClerc J. E., Li B., Payne W. L., Cebula T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science. 1996 Nov 15;274(5290):1208–1211. doi: 10.1126/science.274.5290.1208. [DOI] [PubMed] [Google Scholar]
  19. Li M. Applications of display technology in protein analysis. Nat Biotechnol. 2000 Dec;18(12):1251–1256. doi: 10.1038/82355. [DOI] [PubMed] [Google Scholar]
  20. Lu Z., Murray K. S., Van Cleave V., LaVallie E. R., Stahl M. L., McCoy J. M. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (N Y) 1995 Apr;13(4):366–372. doi: 10.1038/nbt0495-366. [DOI] [PubMed] [Google Scholar]
  21. Marks C., Marks J. D. Phage libraries--a new route to clinically useful antibodies. N Engl J Med. 1996 Sep 5;335(10):730–733. doi: 10.1056/NEJM199609053351008. [DOI] [PubMed] [Google Scholar]
  22. McCafferty J., Griffiths A. D., Winter G., Chiswell D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990 Dec 6;348(6301):552–554. doi: 10.1038/348552a0. [DOI] [PubMed] [Google Scholar]
  23. Olsen M. J., Stephens D., Griffiths D., Daugherty P., Georgiou G., Iverson B. L. Function-based isolation of novel enzymes from a large library. Nat Biotechnol. 2000 Oct;18(10):1071–1074. doi: 10.1038/80267. [DOI] [PubMed] [Google Scholar]
  24. Pedersen H., Hölder S., Sutherlin D. P., Schwitter U., King D. S., Schultz P. G. A method for directed evolution and functional cloning of enzymes. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10523–10528. doi: 10.1073/pnas.95.18.10523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Robert A., Samuelson P., Andréoni C., Bächi T., Uhlén M., Binz H., Nguyen T. N., Ståhl S. Surface display on staphylococci: a comparative study. FEBS Lett. 1996 Jul 29;390(3):327–333. doi: 10.1016/0014-5793(96)00684-9. [DOI] [PubMed] [Google Scholar]
  26. Rose R. E. The nucleotide sequence of pACYC177. Nucleic Acids Res. 1988 Jan 11;16(1):356–356. doi: 10.1093/nar/16.1.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scott J. K., Smith G. P. Searching for peptide ligands with an epitope library. Science. 1990 Jul 27;249(4967):386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
  28. Sheets M. D., Amersdorfer P., Finnern R., Sargent P., Lindquist E., Schier R., Hemingsen G., Wong C., Gerhart J. C., Marks J. D. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6157–6162. doi: 10.1073/pnas.95.11.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  30. Sundberg L., Porath J. Preparation of adsorbents for biospecific affinity chromatography. Attachment of group-containing ligands to insoluble polymers by means of bifuctional oxiranes. J Chromatogr. 1974 Mar 13;90(1):87–98. doi: 10.1016/s0021-9673(01)94777-6. [DOI] [PubMed] [Google Scholar]
  31. Szmelcman S., Hofnung M. Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol. 1975 Oct;124(1):112–118. doi: 10.1128/jb.124.1.112-118.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Veiga E., de Lorenzo V., Fernández L. A. Probing secretion and translocation of a beta-autotransporter using a reporter single-chain Fv as a cognate passenger domain. Mol Microbiol. 1999 Sep;33(6):1232–1243. doi: 10.1046/j.1365-2958.1999.01571.x. [DOI] [PubMed] [Google Scholar]
  33. Winter G., Milstein C. Man-made antibodies. Nature. 1991 Jan 24;349(6307):293–299. doi: 10.1038/349293a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES