Abstract
We have studied the effect of lipid-free human plasma apolipoprotein A-I (apoA-I) on the transport of newly synthesized cholesterol to cell-surface cholesterol-rich domains, which in human skin fibroblasts are mainly represented by caveolae. Changes in transport of newly synthesized cholesterol were assessed after labelling cells with [(14)C]acetate at 15 degrees C and warming cells to permit the transfer of cholesterol, followed by the selective oxidation of cholesterol in cholesterol-rich domains (caveolae) in the plasma membrane before their partial purification. ApoA-I, but not BSA added in an equimolar concentration, enhanced the transport of cholesterol to the caveolae up to 5-fold in a dose- and time-dependent manner. The effect of apoA-I on cholesterol transport exceeded its effect on cholesterol efflux, resulting in an accumulation of intracellular cholesterol in caveolae. Methyl-beta-cyclodextrin, added at a concentration promoting cholesterol efflux to the same extent as apoA-I, also stimulated cholesterol trafficking, but was 3-fold less effective than apoA-I. Progesterone inhibited the transport of newly synthesized cholesterol to the caveolae. Treatment of cells with apoA-I stimulated the expression of caveolin, increasing the amount of caveolin protein and mRNA by approx. 2-fold. We conclude that apoA-I induces the transport of intracellular cholesterol to cell-surface caveolae, possibly in part through the stimulation of caveolin expression.
Full Text
The Full Text of this article is available as a PDF (185.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
- Babitt J., Trigatti B., Rigotti A., Smart E. J., Anderson R. G., Xu S., Krieger M. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem. 1997 May 16;272(20):13242–13249. doi: 10.1074/jbc.272.20.13242. [DOI] [PubMed] [Google Scholar]
- Bist A., Fielding P. E., Fielding C. J. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10693–10698. doi: 10.1073/pnas.94.20.10693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodzioch M., Orsó E., Klucken J., Langmann T., Böttcher A., Diederich W., Drobnik W., Barlage S., Büchler C., Porsch-Ozcürümez M. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999 Aug;22(4):347–351. doi: 10.1038/11914. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brooks-Wilson A., Marcil M., Clee S. M., Zhang L. H., Roomp K., van Dam M., Yu L., Brewer C., Collins J. A., Molhuizen H. O. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999 Aug;22(4):336–345. doi: 10.1038/11905. [DOI] [PubMed] [Google Scholar]
- Castro G. R., Fielding C. J. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry. 1988 Jan 12;27(1):25–29. doi: 10.1021/bi00401a005. [DOI] [PubMed] [Google Scholar]
- Deeg M. A., Bowen R. F., Oram J. F., Bierman E. L. High density lipoproteins stimulate mitogen-activated protein kinases in human skin fibroblasts. Arterioscler Thromb Vasc Biol. 1997 Sep;17(9):1667–1674. doi: 10.1161/01.atv.17.9.1667. [DOI] [PubMed] [Google Scholar]
- Dietschy J. M., Turley S. D., Spady D. K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993 Oct;34(10):1637–1659. [PubMed] [Google Scholar]
- Field F. J., Born E., Murthy S., Mathur S. N. Caveolin is present in intestinal cells: role in cholesterol trafficking? J Lipid Res. 1998 Oct;39(10):1938–1950. [PubMed] [Google Scholar]
- Fielding C. J., Bist A., Fielding P. E. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3753–3758. doi: 10.1073/pnas.94.8.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fielding C. J., Fielding P. E. Intracellular cholesterol transport. J Lipid Res. 1997 Aug;38(8):1503–1521. [PubMed] [Google Scholar]
- Fielding C. J., Fielding P. E. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995 Feb;36(2):211–228. [PubMed] [Google Scholar]
- Fielding P. E., Fielding C. J. Intracellular transport of low density lipoprotein derived free cholesterol begins at clathrin-coated pits and terminates at cell surface caveolae. Biochemistry. 1996 Nov 26;35(47):14932–14938. doi: 10.1021/bi9613382. [DOI] [PubMed] [Google Scholar]
- Fielding P. E., Fielding C. J. Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry. 1995 Nov 7;34(44):14288–14292. doi: 10.1021/bi00044a004. [DOI] [PubMed] [Google Scholar]
- Garver W. S., Deeg M. A., Bowen R. F., Culala M. M., Bierman E. L., Oram J. F. Phosphoproteins regulated by the interaction of high-density lipoprotein with human skin fibroblasts. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2698–2706. doi: 10.1161/01.atv.17.11.2698. [DOI] [PubMed] [Google Scholar]
- Hailstones D., Sleer L. S., Parton R. G., Stanley K. K. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res. 1998 Feb;39(2):369–379. [PubMed] [Google Scholar]
- Hammad S. M., Stefansson S., Twal W. O., Drake C. J., Fleming P., Remaley A., Brewer H. B., Jr, Argraves W. S. Cubilin, the endocytic receptor for intrinsic factor-vitamin B(12) complex, mediates high-density lipoprotein holoparticle endocytosis. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10158–10163. doi: 10.1073/pnas.96.18.10158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hara H., Yokoyama S. Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem. 1991 Feb 15;266(5):3080–3086. [PubMed] [Google Scholar]
- Jian B., de la Llera-Moya M., Ji Y., Wang N., Phillips M. C., Swaney J. B., Tall A. R., Rothblat G. H. Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J Biol Chem. 1998 Mar 6;273(10):5599–5606. doi: 10.1074/jbc.273.10.5599. [DOI] [PubMed] [Google Scholar]
- Johnson W. J., Mahlberg F. H., Rothblat G. H., Phillips M. C. Cholesterol transport between cells and high-density lipoproteins. Biochim Biophys Acta. 1991 Oct 1;1085(3):273–298. doi: 10.1016/0005-2760(91)90132-2. [DOI] [PubMed] [Google Scholar]
- Jolley C. D., Woollett L. A., Turley S. D., Dietschy J. M. Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration. J Lipid Res. 1998 Nov;39(11):2143–2149. [PubMed] [Google Scholar]
- Kaplan M. R., Simoni R. D. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J Cell Biol. 1985 Aug;101(2):446–453. doi: 10.1083/jcb.101.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilsdonk E. P., Yancey P. G., Stoudt G. W., Bangerter F. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem. 1995 Jul 21;270(29):17250–17256. doi: 10.1074/jbc.270.29.17250. [DOI] [PubMed] [Google Scholar]
- Mazzone T., Krishna M., Lange Y. Progesterone blocks intracellular translocation of free cholesterol derived from cholesteryl ester in macrophages. J Lipid Res. 1995 Mar;36(3):544–551. [PubMed] [Google Scholar]
- Mendez A. J., Oram J. F., Bierman E. L. Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol. J Biol Chem. 1991 Jun 5;266(16):10104–10111. [PubMed] [Google Scholar]
- Moncada S., Martin J. F., Higgs A. Symposium on regression of atherosclerosis. Eur J Clin Invest. 1993 Jul;23(7):385–398. doi: 10.1111/j.1365-2362.1993.tb00781.x. [DOI] [PubMed] [Google Scholar]
- Morrison J. R., Fidge N. H., Grego B. Studies on the formation, separation, and characterization of cyanogen bromide fragments of human AI apolipoprotein. Anal Biochem. 1990 Apr;186(1):145–152. doi: 10.1016/0003-2697(90)90588-z. [DOI] [PubMed] [Google Scholar]
- Oikawa S., Mendez A. J., Oram J. F., Bierman E. L., Cheung M. C. Effects of high-density lipoprotein particles containing apo A-I, with or without apo A-II, on intracellular cholesterol efflux. Biochim Biophys Acta. 1993 Jan 10;1165(3):327–334. doi: 10.1016/0005-2760(93)90144-x. [DOI] [PubMed] [Google Scholar]
- Okamoto T., Schlegel A., Scherer P. E., Lisanti M. P. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem. 1998 Mar 6;273(10):5419–5422. doi: 10.1074/jbc.273.10.5419. [DOI] [PubMed] [Google Scholar]
- Oram J. F., Mendez A. J., Slotte J. P., Johnson T. F. High density lipoprotein apolipoproteins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterol-loaded fibroblasts. Arterioscler Thromb. 1991 Mar-Apr;11(2):403–414. doi: 10.1161/01.atv.11.2.403. [DOI] [PubMed] [Google Scholar]
- Oram J. F., Yokoyama S. Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res. 1996 Dec;37(12):2473–2491. [PubMed] [Google Scholar]
- Osono Y., Woollett L. A., Marotti K. R., Melchior G. W., Dietschy J. M. Centripetal cholesterol flux from extrahepatic organs to the liver is independent of the concentration of high density lipoprotein-cholesterol in plasma. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4114–4119. doi: 10.1073/pnas.93.9.4114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothblat G. H., Mahlberg F. H., Johnson W. J., Phillips M. C. Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. J Lipid Res. 1992 Aug;33(8):1091–1097. [PubMed] [Google Scholar]
- Rothblat G. H., de la Llera-Moya M., Atger V., Kellner-Weibel G., Williams D. L., Phillips M. C. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 1999 May;40(5):781–796. [PubMed] [Google Scholar]
- Rust S., Rosier M., Funke H., Real J., Amoura Z., Piette J. C., Deleuze J. F., Brewer H. B., Duverger N., Denèfle P. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999 Aug;22(4):352–355. doi: 10.1038/11921. [DOI] [PubMed] [Google Scholar]
- Scheiffele P., Verkade P., Fra A. M., Virta H., Simons K., Ikonen E. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell Biol. 1998 Feb 23;140(4):795–806. doi: 10.1083/jcb.140.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
- Slotte J. P., Oram J. F., Bierman E. L. Binding of high density lipoproteins to cell receptors promotes translocation of cholesterol from intracellular membranes to the cell surface. J Biol Chem. 1987 Sep 25;262(27):12904–12907. [PubMed] [Google Scholar]
- Smart E. J., Mineo C., Anderson R. G. Clustered folate receptors deliver 5-methyltetrahydrofolate to cytoplasm of MA104 cells. J Cell Biol. 1996 Sep;134(5):1169–1177. doi: 10.1083/jcb.134.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart E. J., Ying Y. S., Conrad P. A., Anderson R. G. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol. 1994 Dec;127(5):1185–1197. doi: 10.1083/jcb.127.5.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart E. J., Ying Y. s., Donzell W. C., Anderson R. G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem. 1996 Nov 15;271(46):29427–29435. doi: 10.1074/jbc.271.46.29427. [DOI] [PubMed] [Google Scholar]
- Sviridov D., Fidge N. Efflux of intracellular versus plasma membrane cholesterol in HepG2 cells: different availability and regulation by apolipoprotein A-I. J Lipid Res. 1995 Sep;36(9):1887–1896. [PubMed] [Google Scholar]
- Sviridov D., Fidge N. Pathway of cholesterol efflux from human hepatoma cells. Biochim Biophys Acta. 1995 May 17;1256(2):210–220. doi: 10.1016/0005-2760(95)00028-b. [DOI] [PubMed] [Google Scholar]
- Sviridov D. Intracellular cholesterol trafficking. Histol Histopathol. 1999 Jan;14(1):305–319. doi: 10.14670/HH-14.305. [DOI] [PubMed] [Google Scholar]
- Sviridov D., Pyle L., Fidge N. Identification of a sequence of apolipoprotein A-I associated with the efflux of intracellular cholesterol to human serum and apolipoprotein A-I containing particles. Biochemistry. 1996 Jan 9;35(1):189–196. doi: 10.1021/bi9507544. [DOI] [PubMed] [Google Scholar]
- Uittenbogaard A., Ying Y., Smart E. J. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem. 1998 Mar 13;273(11):6525–6532. doi: 10.1074/jbc.273.11.6525. [DOI] [PubMed] [Google Scholar]
- Urbani L., Simoni R. D. Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. J Biol Chem. 1990 Feb 5;265(4):1919–1923. [PubMed] [Google Scholar]
- Yancey P. G., Bielicki J. K., Johnson W. J., Lund-Katz S., Palgunachari M. N., Anantharamaiah G. M., Segrest J. P., Phillips M. C., Rothblat G. H. Efflux of cellular cholesterol and phospholipid to lipid-free apolipoproteins and class A amphipathic peptides. Biochemistry. 1995 Jun 20;34(24):7955–7965. doi: 10.1021/bi00024a021. [DOI] [PubMed] [Google Scholar]