Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 1;358(Pt 2):523–528. doi: 10.1042/0264-6021:3580523

Age-related changes in the sulphation of the chondroitin sulphate linkage region from human articular cartilage aggrecan.

R M Lauder 1, T N Huckerby 1, G M Brown 1, M T Bayliss 1, I A Nieduszynski 1
PMCID: PMC1222088  PMID: 11513754

Abstract

The chondroitin sulphate (CS) linkage regions have been isolated from human articular cartilage aggrecan (from 10- to 72-year-olds) by chondroitin ABC endolyase digestion and size-exclusion chromatography. Linkage region hexasaccharides have been characterized and their abundance estimated by high-pH anion-exchange chromatography. The basic structure for the CS linkage region oligosaccharides identified from human aggrecan is as follows: DeltaUA(beta1-3)GalNAc[0S/4S/6S](beta1-4)GlcA(beta1-3)Gal[0S/6S](beta1-3)Gal(beta1-4)Xyl, where DeltaUA represents 4,5-unsaturated hexuronic acid, 4S and 6S represent an O-ester sulphate group on C-4 and C-6 respectively, and 0S represents zero sulphation. There are significant age-related changes in the abundance of the various N-acetylgalactosamine (GalNAc) sulphation forms identified, occurring up to approx. 20 years old. During the period from 10 to 20 years old the level of GalNAc 6-sulphation at the linkage region increases from approx. 43% to approx. 75%, while there is a corresponding reduction in unsulphated (approx. 30% to approx. 20%) and 4-sulphated (approx. 25% to approx. 6%) GalNAc residues. There is also an increase in the incidence of linkage region galactose 6-sulphation (approx. 2% to approx. 10%) which was only observed in linkage regions with GalNAc 6-sulphation. Beyond 20 years old there are few changes in the relative abundance of these GalNAc sulphation variants; however, there is a slight increase in the abundance of 6-sulphation between approx. 20 years old and approx. 40 years old and a slight decrease in its abundance beyond approx. 40 years old. Our data show that in the majority of chains from tissues of all ages the GalNAc residue closest to the linkage region is 6-sulphated, but the level of GalNAc 6-sulphation within the linkage region is lower than the average level observed within the repeat region.

Full Text

The Full Text of this article is available as a PDF (136.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayliss M. T., Osborne D., Woodhouse S., Davidson C. Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J Biol Chem. 1999 May 28;274(22):15892–15900. doi: 10.1074/jbc.274.22.15892. [DOI] [PubMed] [Google Scholar]
  2. Brown G. M., Huckerby T. N., Bayliss M. T., Nieduszynski I. A. Human aggrecan keratan sulfate undergoes structural changes during adolescent development. J Biol Chem. 1998 Oct 9;273(41):26408–26414. doi: 10.1074/jbc.273.41.26408. [DOI] [PubMed] [Google Scholar]
  3. Carlson D. M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968 Feb 10;243(3):616–626. [PubMed] [Google Scholar]
  4. Cheng F., Heinegârd D., Fransson L., Bayliss M., Bielicki J., Hopwood J., Yoshida K. Variations in the chondroitin sulfate-protein linkage region of aggrecans from bovine nasal and human articular cartilages. J Biol Chem. 1996 Nov 8;271(45):28572–28580. doi: 10.1074/jbc.271.45.28572. [DOI] [PubMed] [Google Scholar]
  5. Cooke B. M., Rogerson S. J., Brown G. V., Coppel R. L. Adhesion of malaria-infected red blood cells to chondroitin sulfate A under flow conditions. Blood. 1996 Nov 15;88(10):4040–4044. [PubMed] [Google Scholar]
  6. Doege K., Chen X., Cornuet P. K., Hassell J. Non-glycosaminoglycan bearing domains of perlecan and aggrecan influence the utilization of sites for heparan and chondroitin sulfate synthesis. Matrix Biol. 1997 Oct;16(4):211–221. doi: 10.1016/s0945-053x(97)90010-x. [DOI] [PubMed] [Google Scholar]
  7. Fried M., Duffy P. E. Maternal malaria and parasite adhesion. J Mol Med (Berl) 1998 Mar;76(3-4):162–171. doi: 10.1007/s001090050205. [DOI] [PubMed] [Google Scholar]
  8. Fried M., Lauder R. M., Duffy P. E. Plasmodium falciparum: adhesion of placental isolates modulated by the sulfation characteristics of the glycosaminoglycan receptor. Exp Parasitol. 2000 May;95(1):75–78. doi: 10.1006/expr.2000.4510. [DOI] [PubMed] [Google Scholar]
  9. Fritz T. A., Lugemwa F. N., Sarkar A. K., Esko J. D. Biosynthesis of heparan sulfate on beta-D-xylosides depends on aglycone structure. J Biol Chem. 1994 Jan 7;269(1):300–307. [PubMed] [Google Scholar]
  10. Garcia-Casado G., Collada C., Allona I., Casado R., Pacios L. F., Aragoncillo C., Gomez L. Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Glycobiology. 1998 Oct;8(10):1021–1028. doi: 10.1093/glycob/8.10.1021. [DOI] [PubMed] [Google Scholar]
  11. Heinegård D., Axelsson I. Distribution of keratan sulfate in cartilage proteoglycans. J Biol Chem. 1977 Mar 25;252(6):1971–1979. [PubMed] [Google Scholar]
  12. Herndon M. E., Lander A. D. A diverse set of developmentally regulated proteoglycans is expressed in the rat central nervous system. Neuron. 1990 Jun;4(6):949–961. doi: 10.1016/0896-6273(90)90148-9. [DOI] [PubMed] [Google Scholar]
  13. Huckerby T. N., Lauder R. M., Brown G. M., Nieduszynski I. A., Anderson K., Boocock J., Sandall P. L., Weeks S. D. Characterization of oligosaccharides from the chondroitin sulfates. (1)H-NMR and (13)C-NMR studies of reduced disaccharides and tetrasaccharides. Eur J Biochem. 2001 Mar;268(5):1181–1189. doi: 10.1046/j.1432-1327.2001.01948.x. [DOI] [PubMed] [Google Scholar]
  14. Huckerby T. N., Lauder R. M. Keratan sulfates from bovine tracheal cartilage structural studies of intact polymer chains using H and 13C NMR spectroscopy. Eur J Biochem. 2000 Jun;267(11):3360–3369. doi: 10.1046/j.1432-1327.2000.01374.x. [DOI] [PubMed] [Google Scholar]
  15. Huckerby T. N., Lauder R. M., Nieduszynski I. A. Structure determination for octasaccharides derived from the carbohydrate-protein linkage region of chondroitin sulphate chains in the proteoglycan aggrecan from bovine articular cartilage. Eur J Biochem. 1998 Dec 1;258(2):669–676. doi: 10.1046/j.1432-1327.1998.2580669.x. [DOI] [PubMed] [Google Scholar]
  16. Lauder R. M., Huckerby T. N., Nieduszynski I. A. A fingerprinting method for chondroitin/dermatan sulfate and hyaluronan oligosaccharides. Glycobiology. 2000 Apr;10(4):393–401. doi: 10.1093/glycob/10.4.393. [DOI] [PubMed] [Google Scholar]
  17. Lauder R. M., Huckerby T. N., Nieduszynski I. A. Increased incidence of unsulphated and 4-sulphated residues in the chondroitin sulphate linkage region observed by high-pH anion-exchange chromatography. Biochem J. 2000 Apr 15;347(Pt 2):339–348. doi: 10.1042/0264-6021:3470339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lauder R. M., Huckerby T. N., Nieduszynski I. A., Plaas A. H. Age-related changes in the structure of the keratan sulphate chains attached to fibromodulin isolated from articular cartilage. Biochem J. 1998 Mar 1;330(Pt 2):753–757. doi: 10.1042/bj3300753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lauder R. M., Huckerby T. N., Nieduszynski I. A. Structure of the keratan sulphate chains attached to fibromodulin isolated from bovine tracheal cartilage. Oligosaccharides generated by keratanase digestion. Biochem J. 1994 Sep 1;302(Pt 2):417–423. doi: 10.1042/bj3020417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lauder R. M., Huckerby T. N., Nieduszynski I. A. The structure of the keratan sulphate chains attached to fibromodulin from human articular cartilage. Glycoconj J. 1997 Aug;14(5):651–660. doi: 10.1023/a:1018552913584. [DOI] [PubMed] [Google Scholar]
  21. Lauder R. M., Huckerby T. N., Nieduszynski I. A. The structure of the keratan sulphate chains attached to fibromodulin isolated from articular cartilage. Eur J Biochem. 1996 Dec 1;242(2):402–409. doi: 10.1111/j.1432-1033.1996.0402r.x. [DOI] [PubMed] [Google Scholar]
  22. Lauder R. M., Huckerby T. N., Nieduszynski I. A. The structure of the keratan sulphate chains attached to fibromodulin isolated from bovine tracheal cartilage: oligosaccharides generated by keratanase II digestion. Glycoconj J. 1995 Oct;12(5):651–659. doi: 10.1007/BF00731261. [DOI] [PubMed] [Google Scholar]
  23. Lyon M., Deakin J. A., Gallagher J. T. Liver heparan sulfate structure. A novel molecular design. J Biol Chem. 1994 Apr 15;269(15):11208–11215. [PubMed] [Google Scholar]
  24. Margolis R. U., Margolis R. K. Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tissue Res. 1997 Nov;290(2):343–348. doi: 10.1007/s004410050939. [DOI] [PubMed] [Google Scholar]
  25. Mark M. P., Baker J. R., Kimata K., Ruch J. V. Regulated changes in chondroitin sulfation during embryogenesis: an immunohistochemical approach. Int J Dev Biol. 1990 Mar;34(1):191–204. [PubMed] [Google Scholar]
  26. Nadanaka S., Clement A., Masayama K., Faissner A., Sugahara K. Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chondroitin sulfate D with a neurite outgrowth promoting activity. J Biol Chem. 1998 Feb 6;273(6):3296–3307. doi: 10.1074/jbc.273.6.3296. [DOI] [PubMed] [Google Scholar]
  27. Oeben M., Keller R., Stuhlsatz H. W., Greiling H. Constant and variable domains of different disaccharide structure in corneal keratan sulphate chains. Biochem J. 1987 Nov 15;248(1):85–93. doi: 10.1042/bj2480085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Plaas A. H., West L. A., Wong-Palms S., Nelson F. R. Glycosaminoglycan sulfation in human osteoarthritis. Disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. J Biol Chem. 1998 May 15;273(20):12642–12649. doi: 10.1074/jbc.273.20.12642. [DOI] [PubMed] [Google Scholar]
  29. Plaas A. H., Wong-Palms S., Roughley P. J., Midura R. J., Hascall V. C. Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J Biol Chem. 1997 Aug 15;272(33):20603–20610. doi: 10.1074/jbc.272.33.20603. [DOI] [PubMed] [Google Scholar]
  30. Sarkar A. K., Esko J. D. Synthesis and glycosaminoglycan priming activity of three disaccharides related to the linkage region tetrasaccharide of proteoglycans. Carbohydr Res. 1995 Dec 27;279:161–171. doi: 10.1016/0008-6215(95)00304-5. [DOI] [PubMed] [Google Scholar]
  31. Shibata S., Midura R. J., Hascall V. C. Structural analysis of the linkage region oligosaccharides and unsaturated disaccharides from chondroitin sulfate using CarboPac PA1. J Biol Chem. 1992 Apr 5;267(10):6548–6555. [PubMed] [Google Scholar]
  32. Shinmei M., Miyauchi S., Machida A., Miyazaki K. Quantitation of chondroitin 4-sulfate and chondroitin 6-sulfate in pathologic joint fluid. Arthritis Rheum. 1992 Nov;35(11):1304–1308. doi: 10.1002/art.1780351110. [DOI] [PubMed] [Google Scholar]
  33. Sugahara K., Masuda M., Harada T., Yamashina I., de Waard P., Vliegenthart J. F. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin sulfate proteoglycans of whale cartilage. Eur J Biochem. 1991 Dec 18;202(3):805–811. doi: 10.1111/j.1432-1033.1991.tb16436.x. [DOI] [PubMed] [Google Scholar]
  34. Sugahara K., Ohi Y., Harada T., de Waard P., Vliegenthart J. F. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. I. Six compounds containing 0 or 1 sulfate and/or phosphate residues. J Biol Chem. 1992 Mar 25;267(9):6027–6035. [PubMed] [Google Scholar]
  35. Sugahara K., Tsuda H., Yoshida K., Yamada S., de Beer T., Vliegenthart J. F. Structure determination of the octa- and decasaccharide sequences isolated from the carbohydrate-protein linkage region of porcine intestinal heparin. J Biol Chem. 1995 Sep 29;270(39):22914–22923. doi: 10.1074/jbc.270.39.22914. [DOI] [PubMed] [Google Scholar]
  36. Sugahara K., Yamada S., Yoshida K., de Waard P., Vliegenthart J. F. A novel sulfated structure in the carbohydrate-protein linkage region isolated from porcine intestinal heparin. J Biol Chem. 1992 Jan 25;267(3):1528–1533. [PubMed] [Google Scholar]
  37. Thornton D. J., Morris H. G., Cockin G. H., Huckerby T. N., Nieduszynski I. A., Carlstedt I., Hardingham T. E., Ratcliffe A. Structural and immunological studies of keratan sulphates from mature bovine articular cartilage. Biochem J. 1989 May 15;260(1):277–282. doi: 10.1042/bj2600277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]
  39. Zhang L., Esko J. D. Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J Biol Chem. 1994 Jul 29;269(30):19295–19299. [PubMed] [Google Scholar]
  40. de Beer T., Inui A., Tsuda H., Sugahara K., Vliegenthart J. F. Polydispersity in sulfation profile of oligosaccharide alditols isolated from the protein-linkage region and the repeating disaccharide region of chondroitin 4-sulfate of bovine nasal septal cartilage. Eur J Biochem. 1996 Sep 15;240(3):789–797. doi: 10.1111/j.1432-1033.1996.0789h.x. [DOI] [PubMed] [Google Scholar]
  41. de Waard P., Vliegenthart J. F., Harada T., Sugahara K. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. II. Seven compounds containing 2 or 3 sulfate residues. J Biol Chem. 1992 Mar 25;267(9):6036–6043. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES