Abstract
A new data treatment is described for designing kinetic experiments and analysing kinetic results for multi-substrate enzymes. Normalized velocities are plotted against normalized substrate concentrations. Data are grouped into n + 1 families across the range of substrate or product tested, n being the number of substrates plus products assayed. It has the following advantages over traditional methods: (1) it reduces to less than a half the amount of data necessary for a proper description of the system; (2) it introduces a self-consistency checking parameter that ensures the 'scientific reliability' of the mathematical output; (3) it eliminates the need for a prior knowledge of Vmax; (4) the normalization of data allows the use of robust and fuzzy methods suitable for managing really 'noisy' data; (5) it is appropriate for analysing complex systems, as the complete general equation is used, and the actual influence of effectors can be typified; (6) it is amenable to being implemented as a software that incorporates testing and electing among rival kinetic models.
Full Text
The Full Text of this article is available as a PDF (162.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
- Bravo I. G., Barrallo S., Ferrero M. A., Rodríguez-Aparicio L. B., Martínez-Blanco H., Reglero A. Kinetic properties of the acylneuraminate cytidylyltransferase from Pasteurella haemolytica A2. Biochem J. 2001 Sep 15;358(Pt 3):585–598. doi: 10.1042/bj3580585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan W. W. Combination plots as graphical tools in the study of enzyme inhibition. Biochem J. 1995 Nov 1;311(Pt 3):981–985. doi: 10.1042/bj3110981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
- Di Cera E. Use of weighting functions in data fitting. Methods Enzymol. 1992;210:68–87. doi: 10.1016/0076-6879(92)10006-y. [DOI] [PubMed] [Google Scholar]
- Johnson M. L., Faunt L. M. Parameter estimation by least-squares methods. Methods Enzymol. 1992;210:1–37. doi: 10.1016/0076-6879(92)10003-v. [DOI] [PubMed] [Google Scholar]
- Johnson M. L. Outliers and robust parameter estimation. Methods Enzymol. 2000;321:417–424. doi: 10.1016/s0076-6879(00)21206-8. [DOI] [PubMed] [Google Scholar]
- Johnson M. L. Parameter correlations while curve fitting. Methods Enzymol. 2000;321:424–446. doi: 10.1016/s0076-6879(00)21207-x. [DOI] [PubMed] [Google Scholar]
- Katz W. T., Snell J. W., Merickel M. B. Artificial neural networks. Methods Enzymol. 1992;210:610–636. doi: 10.1016/0076-6879(92)10031-8. [DOI] [PubMed] [Google Scholar]
- Mannervik B. Regression analysis, experimental error, and statistical criteria in the design and analysis of experiments for discrimination between rival kinetic models. Methods Enzymol. 1982;87:370–390. doi: 10.1016/s0076-6879(82)87023-7. [DOI] [PubMed] [Google Scholar]
- Markus M., Hess B., Ottaway J. H., Cornish-Bowden A. The analysis of kinetic data in biochemistry. A critical evaluation of methods. FEBS Lett. 1976 Apr 1;63(2):225–230. doi: 10.1016/0014-5793(76)80100-7. [DOI] [PubMed] [Google Scholar]