Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2001 Sep 15;358(Pt 3):573–583. doi: 10.1042/bj3580573

A normalized plot as a novel and time-saving tool in complex enzyme kinetic analysis.

I G Bravo 1, F Busto 1, D De Arriaga 1, M A Ferrero 1, L B Rodríguez-Aparicio 1, H Martínez-Blanco 1, A Reglero 1
PMCID: PMC1222113  PMID: 11577687

Abstract

A new data treatment is described for designing kinetic experiments and analysing kinetic results for multi-substrate enzymes. Normalized velocities are plotted against normalized substrate concentrations. Data are grouped into n + 1 families across the range of substrate or product tested, n being the number of substrates plus products assayed. It has the following advantages over traditional methods: (1) it reduces to less than a half the amount of data necessary for a proper description of the system; (2) it introduces a self-consistency checking parameter that ensures the 'scientific reliability' of the mathematical output; (3) it eliminates the need for a prior knowledge of Vmax; (4) the normalization of data allows the use of robust and fuzzy methods suitable for managing really 'noisy' data; (5) it is appropriate for analysing complex systems, as the complete general equation is used, and the actual influence of effectors can be typified; (6) it is amenable to being implemented as a software that incorporates testing and electing among rival kinetic models.

Full Text

The Full Text of this article is available as a PDF (162.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beechem J. M. Global analysis of biochemical and biophysical data. Methods Enzymol. 1992;210:37–54. doi: 10.1016/0076-6879(92)10004-w. [DOI] [PubMed] [Google Scholar]
  2. Bravo I. G., Barrallo S., Ferrero M. A., Rodríguez-Aparicio L. B., Martínez-Blanco H., Reglero A. Kinetic properties of the acylneuraminate cytidylyltransferase from Pasteurella haemolytica A2. Biochem J. 2001 Sep 15;358(Pt 3):585–598. doi: 10.1042/bj3580585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan W. W. Combination plots as graphical tools in the study of enzyme inhibition. Biochem J. 1995 Nov 1;311(Pt 3):981–985. doi: 10.1042/bj3110981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  5. Di Cera E. Use of weighting functions in data fitting. Methods Enzymol. 1992;210:68–87. doi: 10.1016/0076-6879(92)10006-y. [DOI] [PubMed] [Google Scholar]
  6. Johnson M. L., Faunt L. M. Parameter estimation by least-squares methods. Methods Enzymol. 1992;210:1–37. doi: 10.1016/0076-6879(92)10003-v. [DOI] [PubMed] [Google Scholar]
  7. Johnson M. L. Outliers and robust parameter estimation. Methods Enzymol. 2000;321:417–424. doi: 10.1016/s0076-6879(00)21206-8. [DOI] [PubMed] [Google Scholar]
  8. Johnson M. L. Parameter correlations while curve fitting. Methods Enzymol. 2000;321:424–446. doi: 10.1016/s0076-6879(00)21207-x. [DOI] [PubMed] [Google Scholar]
  9. Katz W. T., Snell J. W., Merickel M. B. Artificial neural networks. Methods Enzymol. 1992;210:610–636. doi: 10.1016/0076-6879(92)10031-8. [DOI] [PubMed] [Google Scholar]
  10. Mannervik B. Regression analysis, experimental error, and statistical criteria in the design and analysis of experiments for discrimination between rival kinetic models. Methods Enzymol. 1982;87:370–390. doi: 10.1016/s0076-6879(82)87023-7. [DOI] [PubMed] [Google Scholar]
  11. Markus M., Hess B., Ottaway J. H., Cornish-Bowden A. The analysis of kinetic data in biochemistry. A critical evaluation of methods. FEBS Lett. 1976 Apr 1;63(2):225–230. doi: 10.1016/0014-5793(76)80100-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES