Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 1;361(Pt 1):87–95. doi: 10.1042/0264-6021:3610087

Nucleotides and heteroduplex DNA preserve the active conformation of Pseudomonas aeruginosa MutS by preventing protein oligomerization.

Roberto J Pezza 1, Andrea M Smania 1, José L Barra 1, Carlos E Argaraña 1
PMCID: PMC1222282  PMID: 11742532

Abstract

MutS, a component of the mismatch repair system begins the DNA reparation process by recognizing base/base mismatches or small insertion/deletion loops. We have cloned the mutS gene from the human opportunistic pathogen Pseudomonas aeruginosa and analysed the biochemical properties of the encoded protein. Complementation of the hypermutator phenotype of a P. aeruginosa mutS mutant strain indicated that the isolated gene was functional. When purified MutS was incubated at 37 degrees C in the absence of ligands, a rapid inactivation of the oligonucleotide binding capability and ATPase activity occurred. However, the presence of ATP, ADP or heteroduplex oligonucleotides, but not homoduplex oligonucleotides, prevented the protein from being inactivated. The analysis of the protein by native PAGE indicated that the active conformation state correlates with the presence of MutS dimer. Analysis by gel-filtration chromatography showed that the inactive protein formed by incubation at 37 degrees C in the absence of ligands corresponds to the formation of a high molecular mass oligomer. The kinetic analysis of the oligomer formation showed that the extent of the reaction was markedly dependent on the temperature and the presence of MutS ligands. However, the protein inactivation apparently occurred before the maximum extent of MutS oligomerization. Further analysis of the MutS oligomers by electron microscopy showed the presence of regular structures consisting of four subunits, with each subunit probably representing a MutS homodimer. It is concluded that MutS possesses an intrinsic propensity to form oligomeric structures and that the presence of physiological ligands, such as nucleotides or heteroduplex DNA, but not homoduplex DNA, plays an important role in keeping the protein in an active conformation by preventing protein oligomerization.

Full Text

The Full Text of this article is available as a PDF (232.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Sokolsky T., Studamire B., Miret J. J., Lahue R. S. Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol Cell Biol. 1997 May;17(5):2436–2447. doi: 10.1128/mcb.17.5.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen D. J., Makhov A., Grilley M., Taylor J., Thresher R., Modrich P., Griffith J. D. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 1997 Jul 16;16(14):4467–4476. doi: 10.1093/emboj/16.14.4467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Au K. G., Welsh K., Modrich P. Initiation of methyl-directed mismatch repair. J Biol Chem. 1992 Jun 15;267(17):12142–12148. [PubMed] [Google Scholar]
  4. Biswas I., Ban C., Fleming K. G., Qin J., Lary J. W., Yphantis D. A., Yang W., Hsieh P. Oligomerization of a MutS mismatch repair protein from Thermus aquaticus. J Biol Chem. 1999 Aug 13;274(33):23673–23678. doi: 10.1074/jbc.274.33.23673. [DOI] [PubMed] [Google Scholar]
  5. Biswas I., Hsieh P. Identification and characterization of a thermostable MutS homolog from Thermus aquaticus. J Biol Chem. 1996 Mar 1;271(9):5040–5048. doi: 10.1074/jbc.271.9.5040. [DOI] [PubMed] [Google Scholar]
  6. Biswas I., Obmolova G., Takahashi M., Herr A., Newman M. A., Yang W., Hsieh P. Disruption of the helix-u-turn-helix motif of MutS protein: loss of subunit dimerization, mismatch binding and ATP hydrolysis. J Mol Biol. 2001 Jan 26;305(4):805–816. doi: 10.1006/jmbi.2000.4367. [DOI] [PubMed] [Google Scholar]
  7. Biswas I., Vijayvargia R. Heteroduplex DNA and ATP induced conformational changes of a MutS mismatch repair protein from Thermus aquaticus. Biochem J. 2000 May 1;347(Pt 3):881–886. [PMC free article] [PubMed] [Google Scholar]
  8. Bjornson K. P., Allen D. J., Modrich P. Modulation of MutS ATP hydrolysis by DNA cofactors. Biochemistry. 2000 Mar 21;39(11):3176–3183. doi: 10.1021/bi992286u. [DOI] [PubMed] [Google Scholar]
  9. Blackwell L. J., Martik D., Bjornson K. P., Bjornson E. S., Modrich P. Nucleotide-promoted release of hMutSalpha from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J Biol Chem. 1998 Nov 27;273(48):32055–32062. doi: 10.1074/jbc.273.48.32055. [DOI] [PubMed] [Google Scholar]
  10. Buermeyer A. B., Deschênes S. M., Baker S. M., Liskay R. M. Mammalian DNA mismatch repair. Annu Rev Genet. 1999;33:533–564. doi: 10.1146/annurev.genet.33.1.533. [DOI] [PubMed] [Google Scholar]
  11. Chi N. W., Kolodner R. D. The effect of DNA mismatches on the ATPase activity of MSH1, a protein in yeast mitochondria that recognizes DNA mismatches. J Biol Chem. 1994 Nov 25;269(47):29993–29997. [PubMed] [Google Scholar]
  12. De Meis L. Phosphorylation of the membranous protein of the sarcoplasmic reticulum. Inhibition by Na + and K + . Biochemistry. 1972 Jun 20;11(13):2460–2465. doi: 10.1021/bi00763a012. [DOI] [PubMed] [Google Scholar]
  13. Delain E., Pochon F., Barray M., Van Leuven F. Ultrastructure of alpha 2-macroglobulins. Electron Microsc Rev. 1992;5(2):231–281. doi: 10.1016/0892-0354(92)90012-f. [DOI] [PubMed] [Google Scholar]
  14. Fishel R. Mismatch repair, molecular switches, and signal transduction. Genes Dev. 1998 Jul 15;12(14):2096–2101. doi: 10.1101/gad.12.14.2096. [DOI] [PubMed] [Google Scholar]
  15. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gradia S., Acharya S., Fishel R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell. 1997 Dec 26;91(7):995–1005. doi: 10.1016/s0092-8674(00)80490-0. [DOI] [PubMed] [Google Scholar]
  17. Gradia S., Subramanian D., Wilson T., Acharya S., Makhov A., Griffith J., Fishel R. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell. 1999 Feb;3(2):255–261. doi: 10.1016/s1097-2765(00)80316-0. [DOI] [PubMed] [Google Scholar]
  18. Grilley M., Welsh K. M., Su S. S., Modrich P. Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem. 1989 Jan 15;264(2):1000–1004. [PubMed] [Google Scholar]
  19. Haber L. T., Walker G. C. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J. 1991 Sep;10(9):2707–2715. doi: 10.1002/j.1460-2075.1991.tb07815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jiricny J., Su S. S., Wood S. G., Modrich P. Mismatch-containing oligonucleotide duplexes bound by the E. coli mutS-encoded protein. Nucleic Acids Res. 1988 Aug 25;16(16):7843–7853. doi: 10.1093/nar/16.16.7843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Joshi A., Sen S., Rao B. J. ATP-hydrolysis-dependent conformational switch modulates the stability of MutS-mismatch complexes. Nucleic Acids Res. 2000 Feb 15;28(4):853–861. doi: 10.1093/nar/28.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M., 2nd, Peterson K. M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995 Dec 1;166(1):175–176. doi: 10.1016/0378-1119(95)00584-1. [DOI] [PubMed] [Google Scholar]
  23. Lamers M. H., Perrakis A., Enzlin J. H., Winterwerp H. H., de Wind N., Sixma T. K. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. Nature. 2000 Oct 12;407(6805):711–717. doi: 10.1038/35037523. [DOI] [PubMed] [Google Scholar]
  24. LeClerc J. E., Li B., Payne W. L., Cebula T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science. 1996 Nov 15;274(5290):1208–1211. doi: 10.1126/science.274.5290.1208. [DOI] [PubMed] [Google Scholar]
  25. Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. [DOI] [PubMed] [Google Scholar]
  26. Obmolova G., Ban C., Hsieh P., Yang W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature. 2000 Oct 12;407(6805):703–710. doi: 10.1038/35037509. [DOI] [PubMed] [Google Scholar]
  27. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000 May 19;288(5469):1251–1254. doi: 10.1126/science.288.5469.1251. [DOI] [PubMed] [Google Scholar]
  28. Su S. S., Lahue R. S., Au K. G., Modrich P. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J Biol Chem. 1988 May 15;263(14):6829–6835. [PubMed] [Google Scholar]
  29. Su S. S., Modrich P. Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5057–5061. doi: 10.1073/pnas.83.14.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takamatsu S., Kato R., Kuramitsu S. Mismatch DNA recognition protein from an extremely thermophilic bacterium, Thermus thermophilus HB8. Nucleic Acids Res. 1996 Feb 15;24(4):640–647. doi: 10.1093/nar/24.4.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Delden C., Iglewski B. H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998 Oct-Dec;4(4):551–560. doi: 10.3201/eid0404.980405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu T. H., Marinus M. G. Deletion mutation analysis of the mutS gene in Escherichia coli. J Biol Chem. 1999 Feb 26;274(9):5948–5952. doi: 10.1074/jbc.274.9.5948. [DOI] [PubMed] [Google Scholar]
  33. Wu T. H., Marinus M. G. Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol. 1994 Sep;176(17):5393–5400. doi: 10.1128/jb.176.17.5393-5400.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamamoto A., Schofield M. J., Biswas I., Hsieh P. Requirement for Phe36 for DNA binding and mismatch repair by Escherichia coli MutS protein. Nucleic Acids Res. 2000 Sep 15;28(18):3564–3569. doi: 10.1093/nar/28.18.3564. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES