Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jan 1;361(Pt 1):119–123. doi: 10.1042/0264-6021:3610119

Monomers of the catalytic domain of human neuropathy target esterase are active in the presence of phospholipid.

Jane Atkins 1, Lee H Luthjens 1, Marinus L Hom 1, Paul Glynn 1
PMCID: PMC1222286  PMID: 11742536

Abstract

NEST is a hydrophobic recombinant polypeptide comprising the catalytic domain (residues 727-1216) of neuropathy target esterase. NEST in bacterial lysates has potent esterase activity, which is lost after its solubilization and purification in detergent-containing solutions. Activity in purified NEST preparations was restored by the addition of phospholipids before the removal of detergent by dialysis. The pattern of digestion by proteinase K of NEST-phospholipid complexes suggested that NEST might incorporate in a topologically random fashion into nascent liposomes and that the bulk of each NEST molecule might be exposed either to the liposome lumen or the external medium. Significant quantities of NEST were liberated from NEST-phospholipid complexes by treatment with dilute acid or alkali, suggesting that charge interactions might contribute to the association; however, NEST was irreversibly denatured at these pH values. Treatment of NEST-phospholipid complexes with glutaraldehyde afforded some protection against the inactivation of esterase activity by detergent but the pattern of cross-linked forms of NEST generated did not indicate pre-existing oligomers. Similarly, the inactivation of esterase activity in NEST-phospholipid complexes by radiation indicated that NEST monomers are catalytically active. The foregoing observations are not compatible with structural algorithms predicting that the catalytic serine residue lies at the centre of one of three transmembrane helices in NEST.

Full Text

The Full Text of this article is available as a PDF (184.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins J., Glynn P. Membrane association of and critical residues in the catalytic domain of human neuropathy target esterase. J Biol Chem. 2000 Aug 11;275(32):24477–24483. doi: 10.1074/jbc.M002921200. [DOI] [PubMed] [Google Scholar]
  2. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  3. Dekker N., Tommassen J., Lustig A., Rosenbusch J. P., Verheij H. M. Dimerization regulates the enzymatic activity of Escherichia coli outer membrane phospholipase A. J Biol Chem. 1997 Feb 7;272(6):3179–3184. doi: 10.1074/jbc.272.6.3179. [DOI] [PubMed] [Google Scholar]
  4. Derewenda Z. S., Sharp A. M. News from the interface: the molecular structures of triacylglyceride lipases. Trends Biochem Sci. 1993 Jan;18(1):20–25. doi: 10.1016/0968-0004(93)90082-x. [DOI] [PubMed] [Google Scholar]
  5. Dessen A. Structure and mechanism of human cytosolic phospholipase A(2). Biochim Biophys Acta. 2000 Oct 31;1488(1-2):40–47. doi: 10.1016/s1388-1981(00)00108-6. [DOI] [PubMed] [Google Scholar]
  6. Glynn P. Neuropathy target esterase. Biochem J. 1999 Dec 15;344(Pt 3):625–631. [PMC free article] [PubMed] [Google Scholar]
  7. Hill J. S., Davis R. C., Yang D., Wen J., Philo J. S., Poon P. H., Phillips M. L., Kempner E. S., Wong H. Human hepatic lipase subunit structure determination. J Biol Chem. 1996 Sep 13;271(37):22931–22936. doi: 10.1074/jbc.271.37.22931. [DOI] [PubMed] [Google Scholar]
  8. Johnson M. K. The delayed neurotoxic effect of some organophosphorus compounds. Identification of the phosphorylation site as an esterase. Biochem J. 1969 Oct;114(4):711–717. doi: 10.1042/bj1140711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson M. K. The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters. J Neurochem. 1974 Oct;23(4):785–789. doi: 10.1111/j.1471-4159.1974.tb04404.x. [DOI] [PubMed] [Google Scholar]
  10. Landau E. M., Rosenbusch J. P. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532–14535. doi: 10.1073/pnas.93.25.14532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lush M. J., Li Y., Read D. J., Willis A. C., Glynn P. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J. 1998 May 15;332(Pt 1):1–4. doi: 10.1042/bj3320001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pope C. N., Padilla S. Modulation of neurotoxic esterase activity in vitro by phospholipids. Toxicol Appl Pharmacol. 1989 Feb;97(2):272–278. doi: 10.1016/0041-008x(89)90332-3. [DOI] [PubMed] [Google Scholar]
  13. Schoonderwoerd K., Hom M. L., Luthjens L. H., Vieira van Bruggen D., Jansen H. Functional molecular mass of rat hepatic lipase in liver, adrenal gland and ovary is different. Biochem J. 1996 Sep 1;318(Pt 2):463–467. doi: 10.1042/bj3180463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Snijder H. J., Dijkstra B. W. Bacterial phospholipase A: structure and function of an integral membrane phospholipase. Biochim Biophys Acta. 2000 Oct 31;1488(1-2):91–101. doi: 10.1016/s1388-1981(00)00113-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES