Abstract
The inhibitory kappaB (IkappaB)-like (IkappaBL) gene is located within the Class III region of the MHC on human chromosome 6. Previous analysis of the predicted amino acid sequence of the human IkappaBL protein revealed three putative functional domains; 2-3 ankyrin repeat sequences, which are similar to the second and third ankyrin repeats of the nuclear factor kappaB (NF-kappaB) protein; three PEST sequence motifs (a sequence that is rich in proline, serine, aspartic acid and threonine residues), which are also found in other IkappaB family members; and a C-terminal leucine zipper-like motif. In the present study we have identified a novel bipartite motif, which is required for nuclear localization of the IkappaBL protein. Analyses of IkappaBL-specific transcripts revealed the existence of a widely expressed spliced variant form of IkappaBL (IkappaBLsv1), which lacks the amino acid sequence GELEDEWQEVMGRFE (where single-letter amino-acid notation has been used). Interestingly, translation of IkappaBL mRNA in vivo was found to initiate predominantly from the second available methionine, thereby resulting in the disruption of the predicted N-terminal PEST sequence. Also, transient expression of T7 epitope-tagged IkappaBL and IkappaBLsv1 proteins in mammalian cells showed that both proteins were targeted to the nucleus, where they accumulate in nuclear speckles. To define the protein domains required for nuclear import and subnuclear localization, a complementary set of deletion mutants and enhanced green fluorescent protein-IkappaBL domain fusions were expressed in mammalian cells. Data from these experiments show that a combination of the ankyrin-repeat region and an adjacent arginine-rich sequence are necessary and sufficient for both nuclear import and speckle localization.
Full Text
The Full Text of this article is available as a PDF (347.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguado B., Campbell R. D. Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J Biol Chem. 1998 Feb 13;273(7):4096–4105. doi: 10.1074/jbc.273.7.4096. [DOI] [PubMed] [Google Scholar]
- Albertella M. R., Campbell R. D. Characterization of a novel gene in the human major histocompatibility complex that encodes a potential new member of the I kappa B family of proteins. Hum Mol Genet. 1994 May;3(5):793–799. doi: 10.1093/hmg/3.5.793. [DOI] [PubMed] [Google Scholar]
- Arenzana-Seisdedos F., Thompson J., Rodriguez M. S., Bachelerie F., Thomas D., Hay R. T. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol. 1995 May;15(5):2689–2696. doi: 10.1128/mcb.15.5.2689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arenzana-Seisdedos F., Turpin P., Rodriguez M., Thomas D., Hay R. T., Virelizier J. L., Dargemont C. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J Cell Sci. 1997 Feb;110(Pt 3):369–378. doi: 10.1242/jcs.110.3.369. [DOI] [PubMed] [Google Scholar]
- Brown K., Park S., Kanno T., Franzoso G., Siebenlist U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2532–2536. doi: 10.1073/pnas.90.6.2532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cokol M., Nair R., Rost B. Finding nuclear localization signals. EMBO Rep. 2000 Nov;1(5):411–415. doi: 10.1093/embo-reports/kvd092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cressman D. E., Taub R. I kappa B alpha can localize in the nucleus but shows no direct transactivation potential. Oncogene. 1993 Sep;8(9):2567–2573. [PubMed] [Google Scholar]
- Cáceres J. F., Misteli T., Screaton G. R., Spector D. L., Krainer A. R. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J Cell Biol. 1997 Jul 28;138(2):225–238. doi: 10.1083/jcb.138.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dostie J., Lejbkowicz F., Sonenberg N. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J Cell Biol. 2000 Jan 24;148(2):239–247. doi: 10.1083/jcb.148.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dye B. T., Patton J. G. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Exp Cell Res. 2001 Feb 1;263(1):131–144. doi: 10.1006/excr.2000.5097. [DOI] [PubMed] [Google Scholar]
- Eilbracht J., Schmidt-Zachmann M. S. Identification of a sequence element directing a protein to nuclear speckles. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3849–3854. doi: 10.1073/pnas.071042298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomez-Escobar N., Chou C. F., Lin W. W., Hsieh S. L., Campbell R. D. The G11 gene located in the major histocompatibility complex encodes a novel nuclear serine/threonine protein kinase. J Biol Chem. 1998 Nov 20;273(47):30954–30960. doi: 10.1074/jbc.273.47.30954. [DOI] [PubMed] [Google Scholar]
- Hatada E. N., Naumann M., Scheidereit C. Common structural constituents confer I kappa B activity to NF-kappa B p105 and I kappa B/MAD-3. EMBO J. 1993 Jul;12(7):2781–2788. doi: 10.1002/j.1460-2075.1993.tb05939.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedley M. L., Amrein H., Maniatis T. An amino acid sequence motif sufficient for subnuclear localization of an arginine/serine-rich splicing factor. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11524–11528. doi: 10.1073/pnas.92.25.11524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henkel T., Machleidt T., Alkalay I., Krönke M., Ben-Neriah Y., Baeuerle P. A. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. doi: 10.1038/365182a0. [DOI] [PubMed] [Google Scholar]
- Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
- Jacobs M. D., Harrison S. C. Structure of an IkappaBalpha/NF-kappaB complex. Cell. 1998 Dec 11;95(6):749–758. doi: 10.1016/s0092-8674(00)81698-0. [DOI] [PubMed] [Google Scholar]
- Jagiello I., Van Eynde A., Vulsteke V., Beullens M., Boudrez A., Keppens S., Stalmans W., Bollen M. Nuclear and subnuclear targeting sequences of the protein phosphatase-1 regulator NIPP1. J Cell Sci. 2000 Nov;113(Pt 21):3761–3768. doi: 10.1242/jcs.113.21.3761. [DOI] [PubMed] [Google Scholar]
- Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999 Jul 8;234(2):187–208. doi: 10.1016/s0378-1119(99)00210-3. [DOI] [PubMed] [Google Scholar]
- Kozak M. Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome. 1996 Aug;7(8):563–574. doi: 10.1007/s003359900171. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lin R., Beauparlant P., Makris C., Meloche S., Hiscott J. Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol Cell Biol. 1996 Apr;16(4):1401–1409. doi: 10.1128/mcb.16.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malatesta M., Fakan S., Fischer U. The Sm core domain mediates targeting of U1 snRNP to subnuclear compartments involved in transcription and splicing. Exp Cell Res. 1999 Jun 15;249(2):189–198. doi: 10.1006/excr.1999.4468. [DOI] [PubMed] [Google Scholar]
- Melcák I., Cermanová S., Jirsová K., Koberna K., Malínský J., Raska I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell. 2000 Feb;11(2):497–510. doi: 10.1091/mbc.11.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milner C. M., Smith S. V., Carrillo M. B., Taylor G. L., Hollinshead M., Campbell R. D. Identification of a sialidase encoded in the human major histocompatibility complex. J Biol Chem. 1997 Feb 14;272(7):4549–4558. doi: 10.1074/jbc.272.7.4549. [DOI] [PubMed] [Google Scholar]
- Mintz P. J., Patterson S. D., Neuwald A. F., Spahr C. S., Spector D. L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 1999 Aug 2;18(15):4308–4320. doi: 10.1093/emboj/18.15.4308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misteli T., Cáceres J. F., Spector D. L. The dynamics of a pre-mRNA splicing factor in living cells. Nature. 1997 May 29;387(6632):523–527. doi: 10.1038/387523a0. [DOI] [PubMed] [Google Scholar]
- Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ota M., Katsuyama Y., Kimura A., Tsuchiya K., Kondo M., Naruse T., Mizuki N., Itoh K., Sasazuki T., Inoko H. A second susceptibility gene for developing rheumatoid arthritis in the human MHC is localized within a 70-kb interval telomeric of the TNF genes in the HLA class III region. Genomics. 2001 Feb 1;71(3):263–270. doi: 10.1006/geno.2000.6371. [DOI] [PubMed] [Google Scholar]
- Sachdev S., Bagchi S., Zhang D. D., Mings A. C., Hannink M. Nuclear import of IkappaBalpha is accomplished by a ran-independent transport pathway. Mol Cell Biol. 2000 Mar;20(5):1571–1582. doi: 10.1128/mcb.20.5.1571-1582.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachdev S., Hoffmann A., Hannink M. Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: the IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol Cell Biol. 1998 May;18(5):2524–2534. doi: 10.1128/mcb.18.5.2524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedgwick S. G., Smerdon S. J. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci. 1999 Aug;24(8):311–316. doi: 10.1016/s0968-0004(99)01426-7. [DOI] [PubMed] [Google Scholar]
- Singh S., Aggarwal B. B. Protein-tyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear transcription factor NF-kappa B. J Biol Chem. 1995 May 5;270(18):10631–10639. doi: 10.1074/jbc.270.18.10631. [DOI] [PubMed] [Google Scholar]
- Spector D. L. Nuclear organization and gene expression. Exp Cell Res. 1996 Dec 15;229(2):189–197. doi: 10.1006/excr.1996.0358. [DOI] [PubMed] [Google Scholar]
- Turpin P., Hay R. T., Dargemont C. Characterization of IkappaBalpha nuclear import pathway. J Biol Chem. 1999 Mar 5;274(10):6804–6812. doi: 10.1074/jbc.274.10.6804. [DOI] [PubMed] [Google Scholar]
- Whiteside S. T., Israël A. I kappa B proteins: structure, function and regulation. Semin Cancer Biol. 1997 Apr;8(2):75–82. doi: 10.1006/scbi.1997.0058. [DOI] [PubMed] [Google Scholar]
- Williams S. C., Angerer N. D., Johnson P. F. C/EBP proteins contain nuclear localization signals imbedded in their basic regions. Gene Expr. 1997;6(6):371–385. [PMC free article] [PubMed] [Google Scholar]
- Zabel U., Henkel T., Silva M. S., Baeuerle P. A. Nuclear uptake control of NF-kappa B by MAD-3, an I kappa B protein present in the nucleus. EMBO J. 1993 Jan;12(1):201–211. doi: 10.1002/j.1460-2075.1993.tb05646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Concha E. G., Fernandez-Arquero M., Lopez-Nava G., Martin E., Allcock R. J., Conejero L., Paredes J. G., Diaz-Rubio M. Susceptibility to severe ulcerative colitis is associated with polymorphism in the central MHC gene IKBL. Gastroenterology. 2000 Dec;119(6):1491–1495. doi: 10.1053/gast.2000.20258. [DOI] [PubMed] [Google Scholar]
