Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Mar 15;362(Pt 3):553–560. doi: 10.1042/0264-6021:3620553

Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease.

Aurora Bracale 1, Daniela Spalletti-Cernia 1, Mariarosaria Mastronicola 1, Francesco Castaldi 1, Roberta Mannucci 1, Lucio Nitsch 1, Giuseppe D'Alessio 1
PMCID: PMC1222418  PMID: 11879181

Abstract

Bovine seminal RNase (BS-RNase) is a dimeric RNase selectively cytotoxic for malignant cells. No information is available on its pathway from the extracellular matrix through the cytosol, where it degrades rRNA. An investigation of this pathway is reported here, carried out by immunofluorescence studies, by assessing the effects on BS-RNase cytotoxicity of drugs that affect specific intracellular compartments and by assaying the behaviour of a protein variant, BS-RNase-KDEL (BS-RNase in which a Lys-Asp-Glu-Leu peptide segment is inserted at the C-terminal ends of the subunit chains), endowed with a consensus sequence that directs proteins to the endoplasmic reticulum. BS-RNase was found to bind both normal and malignant cells and to be internalized by both cell types in endosome vesicles. Non-cytotoxic RNases, such as RNase A and a monomeric derivative of BS-RNase, did not bind to the cell surface and were not internalized. However, an engineered, dimeric and cytotoxic variant of RNase A bound effectively and permeated cells. The results of immunofluorescence studies, the effects of nigericin, monensin and brefeldin A on the cytotoxic action of seminal RNase, and the behaviour of the BS-RNase-KDEL variant, led to the conclusion that the pathway of BS-RNase in malignant cells from the extracellular matrix to the cytosol has two essential intracellular stations: endosomes and the trans-Golgi network. In normal cells, however, the protein does not progress from the endosomal compartment to the Golgi complex.

Full Text

The Full Text of this article is available as a PDF (301.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. D'Alessio G., Malorni M. C., Parente A. Dissociation of bovine seminal ribonuclease into catalytically active monomers by selective reduction and alkylation of the intersubunit disulfide bridges. Biochemistry. 1975 Mar 25;14(6):1116–1122. doi: 10.1021/bi00677a004. [DOI] [PubMed] [Google Scholar]
  3. Di Donato A., Cafaro V., D'Alessio G. Ribonuclease A can be transformed into a dimeric ribonuclease with antitumor activity. J Biol Chem. 1994 Jul 1;269(26):17394–17396. [PubMed] [Google Scholar]
  4. Greenfield J. P., Tsai J., Gouras G. K., Hai B., Thinakaran G., Checler F., Sisodia S. S., Greengard P., Xu H. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):742–747. doi: 10.1073/pnas.96.2.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Leland P. A., Schultz L. W., Kim B. M., Raines R. T. Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10407–10412. doi: 10.1073/pnas.95.18.10407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lin J. J., Newton D. L., Mikulski S. M., Kung H. F., Youle R. J., Rybak S. M. Characterization of the mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor ribonuclease. Biochem Biophys Res Commun. 1994 Oct 14;204(1):156–162. doi: 10.1006/bbrc.1994.2439. [DOI] [PubMed] [Google Scholar]
  7. Lippincott-Schwartz J., Yuan L., Tipper C., Amherdt M., Orci L., Klausner R. D. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell. 1991 Nov 1;67(3):601–616. doi: 10.1016/0092-8674(91)90534-6. [DOI] [PubMed] [Google Scholar]
  8. Lord J. M., Roberts L. M. Toxin entry: retrograde transport through the secretory pathway. J Cell Biol. 1998 Feb 23;140(4):733–736. doi: 10.1083/jcb.140.4.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mancheño J. M., Gasset M., Oñaderra M., Gavilanes J. G., D'Alessio G. Bovine seminal ribonuclease destabilizes negatively charged membranes. Biochem Biophys Res Commun. 1994 Feb 28;199(1):119–124. doi: 10.1006/bbrc.1994.1202. [DOI] [PubMed] [Google Scholar]
  10. Mastronicola M. R., Piccoli R., D'Alessio G. Key extracellular and intracellular steps in the antitumor action of seminal ribonuclease. Eur J Biochem. 1995 May 15;230(1):242–249. doi: 10.1111/j.1432-1033.1995.tb20557.x. [DOI] [PubMed] [Google Scholar]
  11. Matousek J. The effect of bovine seminal ribonuclease (AS RNase) on cells of Crocker tumour in mice. Experientia. 1973;29(7):858–859. doi: 10.1007/BF01946329. [DOI] [PubMed] [Google Scholar]
  12. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  13. Miesenböck G., Rothman J. E. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J Cell Biol. 1995 Apr;129(2):309–319. doi: 10.1083/jcb.129.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moroianu J., Riordan J. F. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1677–1681. doi: 10.1073/pnas.91.5.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Newton D. L., Boque L., Wlodawer A., Huang C. Y., Rybak S. M. Single amino acid substitutions at the N-terminus of a recombinant cytotoxic ribonuclease markedly influence biochemical and biological properties. Biochemistry. 1998 Apr 14;37(15):5173–5183. doi: 10.1021/bi972147h. [DOI] [PubMed] [Google Scholar]
  16. Nigg E. A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 1997 Apr 24;386(6627):779–787. doi: 10.1038/386779a0. [DOI] [PubMed] [Google Scholar]
  17. Pelham H. R. Multiple targets for brefeldin A. Cell. 1991 Nov 1;67(3):449–451. doi: 10.1016/0092-8674(91)90517-3. [DOI] [PubMed] [Google Scholar]
  18. Pelham H. R. The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci. 1990 Dec;15(12):483–486. doi: 10.1016/0968-0004(90)90303-s. [DOI] [PubMed] [Google Scholar]
  19. Piccoli R., Di Gaetano S., De Lorenzo C., Grauso M., Monaco C., Spalletti-Cernia D., Laccetti P., Cinátl J., Matousek J., D'Alessio G. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7768–7773. doi: 10.1073/pnas.96.14.7768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Portella G., Ferulano G., Santoro M., Grieco M., Fusco A., Vecchio G. The Kirsten murine sarcoma virus induces rat thyroid carcinomas in vivo. Oncogene. 1989 Feb;4(2):181–188. [PubMed] [Google Scholar]
  21. Saelinger C. B. Use of exotoxin A to inhibit protein synthesis. Methods Enzymol. 1988;165:226–231. doi: 10.1016/s0076-6879(88)65035-x. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suzuki M., Saxena S. K., Boix E., Prill R. J., Vasandani V. M., Ladner J. E., Sung C., Youle R. J. Engineering receptor-mediated cytotoxicity into human ribonucleases by steric blockade of inhibitor interaction. Nat Biotechnol. 1999 Mar;17(3):265–270. doi: 10.1038/7010. [DOI] [PubMed] [Google Scholar]
  24. Tamburrini M., Piccoli R., De Prisco R., Di Donato A., D'Alessio G. Fast and high-yielding procedures for the isolation of bovine seminal RNAase. Ital J Biochem. 1986 Jan-Feb;35(1):22–32. [PubMed] [Google Scholar]
  25. Vescia S., Tramontano D., Augusti-Tocco G., D'Alessio G. In vitro studies on selective inhibition of tumor cell growth by seminal ribonuclease. Cancer Res. 1980 Oct;40(10):3740–3744. [PubMed] [Google Scholar]
  26. Wu Y., Mikulski S. M., Ardelt W., Rybak S. M., Youle R. J. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem. 1993 May 15;268(14):10686–10693. [PubMed] [Google Scholar]
  27. Wu Y., Saxena S. K., Ardelt W., Gadina M., Mikulski S. M., De Lorenzo C., D'Alessio G., Youle R. J. A study of the intracellular routing of cytotoxic ribonucleases. J Biol Chem. 1995 Jul 21;270(29):17476–17481. doi: 10.1074/jbc.270.29.17476. [DOI] [PubMed] [Google Scholar]
  28. Yoshida T., Chen C. C., Zhang M. S., Wu H. C. Disruption of the Golgi apparatus by brefeldin A inhibits the cytotoxicity of ricin, modeccin, and Pseudomonas toxin. Exp Cell Res. 1991 Feb;192(2):389–395. doi: 10.1016/0014-4827(91)90056-z. [DOI] [PubMed] [Google Scholar]
  29. de Nigris M., Russo N., Piccoli R., D'Alessio G., Di Donato A. Expression of bovine seminal ribonuclease in Escherichia coli. Biochem Biophys Res Commun. 1993 May 28;193(1):155–160. doi: 10.1006/bbrc.1993.1603. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES