Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):515–520. doi: 10.1042/0264-6021:3630515

Gal3p and Gal1p interact with the transcriptional repressor Gal80p to form a complex of 1:1 stoichiometry.

David J Timson 1, Helen C Ross 1, Richard J Reece 1
PMCID: PMC1222503  PMID: 11964151

Abstract

The genes encoding the enzymes required for galactose metabolism in Saccharomyces cerevisiae are controlled at the level of transcription by a genetic switch consisting of three proteins: a transcriptional activator, Gal4p; a transcriptional repressor, Gal80p; and a ligand sensor, Gal3p. The switch is turned on in the presence of two small molecule ligands, galactose and ATP. Gal3p shows a high degree of sequence identity with Gal1p, the yeast galactokinase. We have mapped the interaction between Gal80p and Gal3p, which only occurs in the presence of both ligands, using protease protection experiments and have shown that this involves amino acid residue 331 of Gal80p. Gel-filtration experiments indicate that Gal3p, or the galactokinase Gal1p, interact directly with Gal80p to form a complex with 1:1 stoichiometry.

Full Text

The Full Text of this article is available as a PDF (265.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari A., Schwer B. SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J. 1995 Aug 15;14(16):4001–4009. doi: 10.1002/j.1460-2075.1995.tb00071.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhat P. J., Hopper J. E. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol Cell Biol. 1992 Jun;12(6):2701–2707. doi: 10.1128/mcb.12.6.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blank T. E., Woods M. P., Lebo C. M., Xin P., Hopper J. E. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Mol Cell Biol. 1997 May;17(5):2566–2575. doi: 10.1128/mcb.17.5.2566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev. 1987 Dec;51(4):458–476. doi: 10.1128/mr.51.4.458-476.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lohr D., Venkov P., Zlatanova J. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 1995 Jun;9(9):777–787. doi: 10.1096/fasebj.9.9.7601342. [DOI] [PubMed] [Google Scholar]
  8. Melcher K., Xu H. E. Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. EMBO J. 2001 Feb 15;20(4):841–851. doi: 10.1093/emboj/20.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nogi Y., Fukasawa T. Nucleotide sequence of the yeast regulatory gene GAL80. Nucleic Acids Res. 1984 Dec 21;12(24):9287–9298. doi: 10.1093/nar/12.24.9287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Peng G., Hopper J. E. Evidence for Gal3p's cytoplasmic location and Gal80p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Gal4p activity in Saccharomyces cerevisiae. Mol Cell Biol. 2000 Jul;20(14):5140–5148. doi: 10.1128/mcb.20.14.5140-5148.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Platt A., Reece R. J. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J. 1998 Jul 15;17(14):4086–4091. doi: 10.1093/emboj/17.14.4086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Platt A., Ross H. C., Hankin S., Reece R. J. The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3154–3159. doi: 10.1073/pnas.97.7.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reece R. J., Platt A. Signaling activation and repression of RNA polymerase II transcription in yeast. Bioessays. 1997 Nov;19(11):1001–1010. doi: 10.1002/bies.950191110. [DOI] [PubMed] [Google Scholar]
  14. Reece R. J., Rickles R. J., Ptashne M. Overproduction and single-step purification of GAL4 fusion proteins from Escherichia coli. Gene. 1993 Apr 15;126(1):105–107. doi: 10.1016/0378-1119(93)90596-u. [DOI] [PubMed] [Google Scholar]
  15. Sil A. K., Alam S., Xin P., Ma L., Morgan M., Lebo C. M., Woods M. P., Hopper J. E. The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol Cell Biol. 1999 Nov;19(11):7828–7840. doi: 10.1128/mcb.19.11.7828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. St John T. P., Davis R. W. The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol. 1981 Oct 25;152(2):285–315. doi: 10.1016/0022-2836(81)90244-8. [DOI] [PubMed] [Google Scholar]
  17. Suzuki-Fujimoto T., Fukuma M., Yano K. I., Sakurai H., Vonika A., Johnston S. A., Fukasawa T. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol Cell Biol. 1996 May;16(5):2504–2508. doi: 10.1128/mcb.16.5.2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yano K., Fukasawa T. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1721–1726. doi: 10.1073/pnas.94.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zenke F. T., Engles R., Vollenbroich V., Meyer J., Hollenberg C. P., Breunig K. D. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science. 1996 Jun 14;272(5268):1662–1665. doi: 10.1126/science.272.5268.1662. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES