Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):581–587. doi: 10.1042/0264-6021:3630581

Enzymic degradation of plasma arginine using arginine deiminase inhibits nitric oxide production and protects mice from the lethal effects of tumour necrosis factor alpha and endotoxin.

J Brandon Thomas 1, Frederick W Holtsberg 1, C Mark Ensor 1, John S Bomalaski 1, Mike A Clark 1
PMCID: PMC1222511  PMID: 11964159

Abstract

Septic shock is mediated in part by nitric oxide (NO) and tumour necrosis factor alpha (TNFalpha). NO is synthesized primarily from extracellular arginine. We tested the ability of an arginine-degrading enzyme to inhibit NO production in mice and to protect mice from the hypotension and lethality that occur after the administration of TNFalpha or endotoxin. Treatment of BALB/c mice with arginine deiminase (ADI) formulated with succinimidyl succinimide polyethylene glycol of M(r) 20000 (ADI-SS PEG(20000)) eliminated all measurable plasma arginine (from normal levels of approximately 155 microM arginine to 2 microM). In addition, ADI-SS PEG(20000) also inhibited the production of NO, as quantified by plasma nitrate+nitrite. Treatment of mice with TNFalpha or endotoxin resulted in a dose-dependent increase in NO production and lethality. Pretreatment of mice with ADI-SS PEG(20000) resulted in increased resistance to the lethal effects of TNFalpha and endotoxin. These observations are consistent with NO production resulting, to some extent, from the metabolism of extracellular arginine. The toxic effects of TNFalpha and endotoxin may be partially inhibited by enzymic degradation of plasma arginine by ADI-SS PEG(20000). Interestingly, pretreatment with ADI-SS PEG(20000) did not inhibit the anti-tumour activity of TNFalpha in vitro or in vivo. This treatment may allow greater amounts of TNFalpha, as well as other cytokines, to be administered while abrogating side effects such as hypotension and death.

Full Text

The Full Text of this article is available as a PDF (206.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arun B., Curti B. D., Longo D. L., Stevens D., Alvord W. G., Gause B. L., Watson T., Kopp W. C., Janik J. E. Elevations in serum soluble interleukin-2 receptor levels predict relapse in patients with hairy cell leukemia. Cancer J Sci Am. 2000 Jan-Feb;6(1):21–24. [PubMed] [Google Scholar]
  2. Balk R. A. Severe sepsis and septic shock. Definitions, epidemiology, and clinical manifestations. Crit Care Clin. 2000 Apr;16(2):179–192. doi: 10.1016/s0749-0704(05)70106-8. [DOI] [PubMed] [Google Scholar]
  3. Baydoun A. R., Emery P. W., Pearson J. D., Mann G. E. Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells. Biochem Biophys Res Commun. 1990 Dec 31;173(3):940–948. doi: 10.1016/s0006-291x(05)80876-9. [DOI] [PubMed] [Google Scholar]
  4. Beltrán B., Mathur A., Duchen M. R., Erusalimsky J. D., Moncada S. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14602–14607. doi: 10.1073/pnas.97.26.14602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernard G. R., Vincent J. L., Laterre P. F., LaRosa S. P., Dhainaut J. F., Lopez-Rodriguez A., Steingrub J. S., Garber G. E., Helterbrand J. D., Ely E. W. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001 Mar 8;344(10):699–709. doi: 10.1056/NEJM200103083441001. [DOI] [PubMed] [Google Scholar]
  6. Bolaños J. P., Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta. 1999 May 5;1411(2-3):415–436. doi: 10.1016/s0005-2728(99)00030-4. [DOI] [PubMed] [Google Scholar]
  7. Bulotta S., Barsacchi R., Rotiroti D., Borgese N., Clementi E. Activation of the endothelial nitric-oxide synthase by tumor necrosis factor-alpha. A novel feedback mechanism regulating cell death. J Biol Chem. 2000 Nov 20;276(9):6529–6536. doi: 10.1074/jbc.M006535200. [DOI] [PubMed] [Google Scholar]
  8. Busse R., Mülsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 1990 Nov 26;275(1-2):87–90. doi: 10.1016/0014-5793(90)81445-t. [DOI] [PubMed] [Google Scholar]
  9. Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fox G. A., Paterson N. A., McCormack D. G. Effect of inhibition of NO synthase on vascular reactivity in a rat model of hyperdynamic sepsis. Am J Physiol. 1994 Oct;267(4 Pt 2):H1377–H1382. doi: 10.1152/ajpheart.1994.267.4.H1377. [DOI] [PubMed] [Google Scholar]
  11. Girerd X. J., Hirsch A. T., Cooke J. P., Dzau V. J., Creager M. A. L-arginine augments endothelium-dependent vasodilation in cholesterol-fed rabbits. Circ Res. 1990 Dec;67(6):1301–1308. doi: 10.1161/01.res.67.6.1301. [DOI] [PubMed] [Google Scholar]
  12. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  13. Grisham M. B., Johnson G. G., Lancaster J. R., Jr Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol. 1996;268:237–246. doi: 10.1016/s0076-6879(96)68026-4. [DOI] [PubMed] [Google Scholar]
  14. Habeeb A. F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem. 1966 Mar;14(3):328–336. doi: 10.1016/0003-2697(66)90275-2. [DOI] [PubMed] [Google Scholar]
  15. Hecker M., Sessa W. C., Harris H. J., Anggård E. E., Vane J. R. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8612–8616. doi: 10.1073/pnas.87.21.8612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kilbourn R. G., Gross S. S., Jubran A., Adams J., Griffith O. W., Levi R., Lodato R. F. NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci U S A. 1990 May;87(9):3629–3632. doi: 10.1073/pnas.87.9.3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimura K., Taguchi T., Urushizaki I., Ohno R., Abe O., Furue H., Hattori T., Ichihashi H., Inoguchi K., Majima H. Phase I study of recombinant human tumor necrosis factor. Cancer Chemother Pharmacol. 1987;20(3):223–229. doi: 10.1007/BF00570490. [DOI] [PubMed] [Google Scholar]
  18. MacMicking J. D., Nathan C., Hom G., Chartrain N., Fletcher D. S., Trumbauer M., Stevens K., Xie Q. W., Sokol K., Hutchinson N. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995 May 19;81(4):641–650. doi: 10.1016/0092-8674(95)90085-3. [DOI] [PubMed] [Google Scholar]
  19. Matthay M. A. Severe sepsis--a new treatment with both anticoagulant and antiinflammatory properties. N Engl J Med. 2001 Mar 8;344(10):759–762. doi: 10.1056/NEJM200103083441009. [DOI] [PubMed] [Google Scholar]
  20. McDonald K. K., Zharikov S., Block E. R., Kilberg M. S. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "arginine paradox". J Biol Chem. 1997 Dec 12;272(50):31213–31216. doi: 10.1074/jbc.272.50.31213. [DOI] [PubMed] [Google Scholar]
  21. Misawa S., Aoshima M., Takaku H., Matsumoto M., Hayashi H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol. 1994 Aug 15;36(2):145–155. doi: 10.1016/0168-1656(94)90050-7. [DOI] [PubMed] [Google Scholar]
  22. Misko T. P., Schilling R. J., Salvemini D., Moore W. M., Currie M. G. A fluorometric assay for the measurement of nitrite in biological samples. Anal Biochem. 1993 Oct;214(1):11–16. doi: 10.1006/abio.1993.1449. [DOI] [PubMed] [Google Scholar]
  23. Mitaka C., Hirata Y., Ichikawa K., Yokoyama K., Emori T., Kanno K., Amaha K. Effects of TNF-alpha on hemodynamic changes and circulating endothelium-derived vasoactive factors in dogs. Am J Physiol. 1994 Oct;267(4 Pt 2):H1530–H1536. doi: 10.1152/ajpheart.1994.267.4.H1530. [DOI] [PubMed] [Google Scholar]
  24. Mori M., Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000 Sep 7;275(3):715–719. doi: 10.1006/bbrc.2000.3169. [DOI] [PubMed] [Google Scholar]
  25. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  26. Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
  27. Pennica D., Nedwin G. E., Hayflick J. S., Seeburg P. H., Derynck R., Palladino M. A., Kohr W. J., Aggarwal B. B., Goeddel D. V. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984 Dec 20;312(5996):724–729. doi: 10.1038/312724a0. [DOI] [PubMed] [Google Scholar]
  28. Petros A., Lamb G., Leone A., Moncada S., Bennett D., Vallance P. Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res. 1994 Jan;28(1):34–39. doi: 10.1093/cvr/28.1.34. [DOI] [PubMed] [Google Scholar]
  29. SNYDERMAN S. E., BOYER A., HOLT L. E., Jr The arginine requirement of the infant. AMA J Dis Child. 1959 Feb;97(2):192–195. doi: 10.1001/archpedi.1959.02070010194006. [DOI] [PubMed] [Google Scholar]
  30. Sakuma I., Stuehr D. J., Gross S. S., Nathan C., Levi R. Identification of arginine as a precursor of endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8664–8667. doi: 10.1073/pnas.85.22.8664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schilling J., Cakmakci M., Bättig U., Geroulanos S. A new approach in the treatment of hypotension in human septic shock by NG-monomethyl-L-arginine, an inhibitor of the nitric oxide synthetase. Intensive Care Med. 1993;19(4):227–231. doi: 10.1007/BF01694775. [DOI] [PubMed] [Google Scholar]
  32. Schneider F., Lutun P., Hasselmann M., Stoclet J. C., Tempé J. D. Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations. Intensive Care Med. 1992;18(5):309–311. doi: 10.1007/BF01706481. [DOI] [PubMed] [Google Scholar]
  33. Selby P., Hobbs S., Viner C., Jackson E., Jones A., Newell D., Calvert A. H., McElwain T., Fearon K., Humphreys J. Tumour necrosis factor in man: clinical and biological observations. Br J Cancer. 1987 Dec;56(6):803–808. doi: 10.1038/bjc.1987.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simper D., Strobel W. M., Linder L., Haefeli W. E. Indirect evidence for stimulation of nitric oxide release by tumour necrosis factor-alpha in human veins in vivo. Cardiovasc Res. 1995 Dec;30(6):960–964. [PubMed] [Google Scholar]
  35. Smith K. J., Kapoor R., Felts P. A. Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol. 1999 Jan;9(1):69–92. doi: 10.1111/j.1750-3639.1999.tb00212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stuehr D. J. Mammalian nitric oxide synthases. Biochim Biophys Acta. 1999 May 5;1411(2-3):217–230. doi: 10.1016/s0005-2728(99)00016-x. [DOI] [PubMed] [Google Scholar]
  37. Takaku H., Takase M., Abe S., Hayashi H., Miyazaki K. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer. 1992 May 8;51(2):244–249. doi: 10.1002/ijc.2910510213. [DOI] [PubMed] [Google Scholar]
  38. Tangphao O., Chalon S., Coulston A. M., Moreno H., Jr, Chan J. R., Cooke J. P., Hoffman B. B., Blaschke T. F. L-arginine and nitric oxide-related compounds in plasma: comparison of normal and arginine-free diets in a 24-h crossover study. Vasc Med. 1999;4(1):27–32. doi: 10.1177/1358836X9900400105. [DOI] [PubMed] [Google Scholar]
  39. Thiemermann C., Wu C. C., Szabó C., Perretti M., Vane J. R. Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock. Br J Pharmacol. 1993 Sep;110(1):177–182. doi: 10.1111/j.1476-5381.1993.tb13789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Titheradge M. A. Nitric oxide in septic shock. Biochim Biophys Acta. 1999 May 5;1411(2-3):437–455. doi: 10.1016/s0005-2728(99)00031-6. [DOI] [PubMed] [Google Scholar]
  41. Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
  42. Vallance P., Palmer R. M., Moncada S. The role of induction of nitric oxide synthesis in the altered responses of jugular veins from endotoxaemic rabbits. Br J Pharmacol. 1992 Jun;106(2):459–463. doi: 10.1111/j.1476-5381.1992.tb14356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Worrall N. K., Chang K., LeJeune W. S., Misko T. P., Sullivan P. M., Ferguson T. B., Jr, Williamson J. R. TNF-alpha causes reversible in vivo systemic vascular barrier dysfunction via NO-dependent and -independent mechanisms. Am J Physiol. 1997 Dec;273(6 Pt 2):H2565–H2574. doi: 10.1152/ajpheart.1997.273.6.H2565. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES